Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oncogenic dependency on STAT3 serine phosphorylation in KRAS mutant lung cancer

Abstract

The oncogenic potential of the latent transcription factor signal transducer and activator of transcription (STAT)3 in many human cancers, including lung cancer, has been largely attributed to its nuclear activity as a tyrosine-phosphorylated (pY705 site) transcription factor. By contrast, an alternate mitochondrial pool of serine phosphorylated (pS727 site) STAT3 has been shown to promote tumourigenesis by regulating metabolic processes, although this has been reported in only a restricted number of mutant RAS-addicted neoplasms. Therefore, the involvement of STAT3 serine phosphorylation in the pathogenesis of most cancer types, including mutant KRAS lung adenocarcinoma (LAC), is unknown. Here, we demonstrate that LAC is suppressed in oncogenic KrasG12D-driven mouse models engineered for pS727-STAT3 deficiency. The proliferative potential of the transformed KrasG12D lung epithelium, and mutant KRAS human LAC cells, was significantly reduced upon pS727-STAT3 deficiency. Notably, we uncover the multifaceted capacity of constitutive pS727-STAT3 to metabolically reprogramme LAC cells towards a hyper-proliferative state by regulating nuclear and mitochondrial (mt) gene transcription, the latter via the mtDNA transcription factor, TFAM. Collectively, our findings reveal an obligate requirement for the transcriptional activity of pS727-STAT3 in mutant KRAS-driven LAC with potential to guide future therapeutic targeting approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Constitutive expression of serine phosphorylated STAT3 in human LAC patients and the KrasG12D LAC model.
Fig. 2: Suppressed KRAS-induced LAC in pS727-STAT3-deficient KrasG12D:Stat3SA/SA mice.
Fig. 3: pS727-STAT3 deficiency in the KrasG12D LAC mouse model and human LAC cells selectively suppresses cellular proliferation.
Fig. 4: pS727-STAT3 deficiency in human KRAS mutant LAC cells selectively suppresses cellular proliferation.
Fig. 5: pS727-STAT3-mediated dysregulation of oxidative stress and mitochondrial respiration in Kras mutant LAC associates with transcriptional regulation of nuclear- and mitochondrial-encoded genes.
Fig. 6: pS727-STAT3 binding to the promoter of Tfam and other STAT3-regulated genes modulates the transcription initiation activity of RNA Polymerase II.
Fig. 7: Heterozygous ablation of Stat3 suppresses KrasG12D-induced LAC.

Similar content being viewed by others

References

  1. Wong MCS, Lao XQ, Ho KF, Goggins WB, Tse SLA. Incidence and mortality of lung cancer: global trends and association with socioeconomic status. Sci Rep. 2017;7:14300–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389:299–311.

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Goldstein D, Crowe PJ, Yang JL. Next-generation EGFR/HER tyrosine kinase inhibitors for the treatment of patients with non-small-cell lung cancer harboring EGFR mutations: a review of the evidence. Onco Targets Ther. 2016;9:5461–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Noonan KL, Ho C, Laskin J, Murray N. The influence of the evolution of first-line chemotherapy on steadily improving survival in advanced non-small-cell lung cancer clinical trials. J Thorac Oncol. 2015;10:1523–31.

    Article  CAS  PubMed  Google Scholar 

  5. Walser T, Cui X, Yanagawa J, Lee JM, Heinrich E, Lee G, et al. Smoking and lung cancer: the role of inflammation. Proc Am Thorac Soc. 2008;5:811–5.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ahrendt S, Decker PA, Alawi EA, Zhu YR, Sanchez-Cespedes M, Yang SC, et al. Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung. Cancer. 2001;92:1525–30.

    Article  CAS  PubMed  Google Scholar 

  7. Westra WH, Slebos RJ, Offerhaus GJ, Goodman SN, Evers SG, Kensler TW, et al. K-ras oncogene activation in lung adenocarcinomas from former smokers: evidence that K-ras mutations are an early and irreversible event in the development of adenocarcinoma of the lung. Cancer. 1993;72:432–8.

    Article  CAS  PubMed  Google Scholar 

  8. Román M, Baraibar I, López I, Nadal E, Rolfo C, Vicent S, et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer. 2018;17:33.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jackson E, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, et al. DA. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15:3243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DuPage M, Dooley AL, Jacks T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc. 2009;4:1064–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: Mission possible? Nat Rev Drug Discov. 2014;13:828–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Janes MR, Zhang J, Li LS, Hansen R, Peters U, Guo X, et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell. 2018;172:578–89.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu Z, Aref A, Cohoon TJ, Barbie TU, Imamura Y, Yang S, et al. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Cancer Discov. 2014;4:452–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brooks GD, McLeod L, Alhayyani S, Miller A, Russell PA, Ferlin W, et al. IL6 Trans-signaling promotes KRAS-driven lung carcinogenesis. Cancer Res. 2016;76:866–76.

    Article  CAS  PubMed  Google Scholar 

  15. Saad MI, Alhayyani S, McLeod L, Yu L, Alanazi M, Deswaerte V, et al. ADAM17 selectively activates the IL-6 trans-signaling/ERK MAPK axis in KRAS-addicted lung cancer. EMBO Mol Med. 2019;11:e9976.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim HS, Park YH, Lee J, Ahn JS, Kim J, Shim YM, et al. Clinical impact of phosphorylated signal transducer and activator of transcription 3, epidermal growth factor receptor, p53, and vascular endothelial growth factor receptor 1 expression in resected adenocarcinoma of lung by using tissue microarray. Cancer. 2010;116:676–85.

    Article  CAS  PubMed  Google Scholar 

  17. Tong M, Wang J, Jiang N, Pan H, Li D. Correlation between p-STAT3 overexpression and prognosis in lung cancer: a systematic review and meta-analysis. PLoS One. 2017;12:e0182282.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yang Q, Shen S, Zhou S, Ni J, Chen D, Wang G, et al. STAT3 activation and aberrant ligand-dependent sonic hedgehog signaling in human pulmonary adenocarcinoma. Exp Mol Pathol. 2012;93:227–36.

    Article  CAS  PubMed  Google Scholar 

  19. Tran P, Fan AC, Bendapudi PK, Koh S, Komatsubara K, Chen J, et al. Combined Inactivation of MYC and K-Ras oncogenes reverses tumorigenesis in lung adenocarcinomas and lymphomas. PLoS One. 2008;3:e2125.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Du H, Qin Y, Roberts J, Cummings OW, Yan C. Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung. Cancer Res. 2007;67:8494–503.

    Article  CAS  PubMed  Google Scholar 

  21. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14:736–46.

    Article  CAS  PubMed  Google Scholar 

  22. Poli V, Camporeale A. STAT3-mediated metabolic reprograming in cellular transformation and implications for drug resistance. Front Oncol. 2015;5:121.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol. 2018;18:773–89.

    Article  CAS  PubMed  Google Scholar 

  24. Gough D, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science. 2009;324:1713–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, et al. Function of mitochondrial Stat3 in cellular respiration. Science. 2009;323:793–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gough DJ, Marie I, Lobry C, Aifantis I, Levy DE. STAT3 supports experimental K-RasG12D–induced murine myeloproliferative neoplasms dependent on serine phosphorylation. Blood. 2014;124:2252–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garama DJ, White CL, Balic JJ, Gough DJ. Mitochondrial STAT3: powering up a potent factor. Cytokine. 2016;87:20–25.

    Article  CAS  PubMed  Google Scholar 

  28. Balic JJ, Garama DJ, Saad M, Yu L, West A, West AJ, et al. Serine-phosphorylated STAT3 promotes tumorigenesis via modulation of RNA polymerase transcriptional activity. Cancer Res. 2019;79:5272–87.

    Article  CAS  PubMed  Google Scholar 

  29. Shen Y, Schlessinger K, Zhu X, Meffre E, Quimby F, Levy DE, et al. Essential role of STAT3 in postnatal survival and growth revealed by mice lacking STAT3 serine 727 phosphorylation. Mol Cell Biol. 2004;24:407–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wen Z, Zhong Z, Darnell JE Jr. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 1995;82:241–50.

    Article  CAS  PubMed  Google Scholar 

  31. Zouein FA, Zgheib C, Hamza S, Fuseler JW, Hall JE, Soljancic A, et al. Role of STAT3 in angiotensin II-induced hypertension and cardiac remodeling revealed by mice lacking STAT3 serine 727 phosphorylation. Hypertens Res. 2013;36:496–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature. 2001;410:1111–6.

    Article  CAS  PubMed  Google Scholar 

  33. Jerome-Marson V, Mazieres J, Groussard O, Garcia O, Berjaud J, Dahan M, et al. Expression of TTF-1 and cytokeratins in primary and secondary epithelial lung tumours: correlation with histological type and grade. Histopathology. 2004;45:125–34.

    Article  CAS  PubMed  Google Scholar 

  34. Kortlever RM, Sodir N, Wilson CH, Burkhart DL, Pellegrinet L, Brown Swigart L, et al. Myc cooperates with Ras by programming inflammation and immune suppression. Cell. 2017;171:1301–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dragoj M, Milosevic Z, Bankovic J, Dinic J, Pesic M, Tanic N, et al. Association of CCND1 overexpression with KRAS and PTEN alterations in specific subtypes of non-small cell lung carcinoma and its influence on patients’ outcome. Tumour Biol. 2015;36:8773–80.

    Article  CAS  PubMed  Google Scholar 

  36. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, et al. Modelling Myc inhibition as a cancer therapy. Nature. 2008;455:679–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, Bui DA, et al. Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell. 2008;14:447–57.

    Article  CAS  PubMed  Google Scholar 

  38. Dutta P, Zhang L, Zhang H, Peng Q, Montgrain PR, Wang Y, et al. Unphosphorylated STAT3 in heterochromatin formation and tumor suppression in lung cancer. BMC Cancer. 2020;20:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ji H, Houghton A, Mariani TJ, Perera S, Kim CB, Padera R, et al. K-ras activation generates an inflammatory response in lung tumors. Oncogene. 2006;25:2105–12.

    Article  CAS  PubMed  Google Scholar 

  40. McClelland MR, Carskadon SL, Zhao L, White ES, Beer DG, Orringer MB, et al. Diversity of the angiogenic phenotype in non–small cell lung cancer. Am J Respir Cell Mol Biol. 2007;36:343–50.

    Article  CAS  PubMed  Google Scholar 

  41. Liou GY, Doppler H, DelGiorno KE, Zhang L, Leitges M, Crawford HC, et al. Mutant KRas-induced mitochondrial oxidative stress in acinar cells upregulates EGFR signaling to drive formation of pancreatic precancerous lesions. Cell Rep. 2016;14:2325–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA. 2010;107:8788–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  44. Stine ZE, Walton Z, Altman BJ, Hsieh AL, Dang CV. MYC, metabolism, and cancer. Cancer Discov. 2015;5:1024–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM, et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci USA. 2001;98:7319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu L, Wu D, Gao H, Balic J, Tsykin A, Han T-S, et al. Clinical utility of a STAT3-regulated microRNA-200 family signature with prognostic potential in early gastric cancer. Clin Cancer Res. 2018;24:1459–72.

    Article  CAS  PubMed  Google Scholar 

  47. Niu G, Briggs J, Deng J, Ma Y, Lee H, Kortylewski M, et al. Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Mol Cancer Res. 2008;6:1099–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nagao A, Kobayashi M, Koyasu S, Chow CCT, Harada H. HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int J Mol Sci. 2019;20:E238.

    Article  PubMed  Google Scholar 

  49. Hirahara K, Onodera A, Villarino AV, Bonelli M, Sciumè G, Laurence A, et al. Asymmetric action of STAT transcription factors drives transcriptional outputs and cytokine specificity. Immunity. 2015;42:877–89.

    Article  CAS  PubMed  Google Scholar 

  50. Costa-Pereira AP, Tininini S, Strobl B, Alonzi T, Schlaak JF, Is’harc H, et al. Mutational switch of an IL-6 response to an interferon-gamma-like response. Proc Natl Acad Sci USA. 2002;99:8043–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu C, Huo X, Agoston AT, Zhang X, Theiss AL, Cheng E, et al. Mitochondrial STAT3 contributes to transformation of Barrett’s epithelial cells that express oncogenic Ras in a p53-independent fashion. Am J Physiol Gastrointest Liver Physiol. 2015;309:G146–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Song L, Turkson J, Karras JG, Jove R, Haura EB. Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. Oncogene. 2003;22:4150–65.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou J, Qu Z, Yan S, Sun F, Whitsett JA, Shapiro SD, et al. Differential roles of STAT3 in the initiation and growth of lung cancer. Oncogene. 2015;34:3804–14.

    Article  CAS  PubMed  Google Scholar 

  54. Grabner B, Schramek D, Mueller KM, Moll HP, Svinka J, Hoffmann T, et al. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun. 2015;6:6285–98.

    Article  CAS  PubMed  Google Scholar 

  55. Caetano MS, Hassane M, Van HT, Bugarin E, Cumpian AM, McDowell CL, et al. Sex specific function of epithelial STAT3 signaling in pathogenesis of K-ras mutant lung cancer. Nat Commun. 2018;9:4589.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Meissl K, Macho-Maschler S, Müller M, Strobl B. The good and the bad faces of STAT1 in solid tumours. Cytokine. 2017;89:12–20.

    Article  CAS  PubMed  Google Scholar 

  57. Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Förster I, et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity. 1999;10:39–49.

    Article  CAS  PubMed  Google Scholar 

  58. Sano S, Itami S, Takeda K, Tarutani M, Yamaguchi Y, Miura H, et al. Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. EMBO J. 1999;4657–68.

  59. Zhu S, Phatarpekar P, Denman CJ, Senyukov VV, Somanchi SS, Nguyen-Jackson HT, et al. Transcription of the activating receptor NKG2D in natural killer cells is regulated by STAT3 tyrosine phosphorylation. Blood. 2014;124:403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. D’Amico S, Shi J, Martin BL, Crawford HC, Petrenko O, Reich NC. STAT3 is a master regulator of epithelial identity and KRAS-driven tumorigenesis. Genes Dev. 2018;32:1175–87.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Oft M. IL-10: master switch from tumor-promoting inflammation to antitumor immunity. Cancer Immunol Res. 2014;2:194–9.

    Article  CAS  PubMed  Google Scholar 

  62. Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O’Donnell KA, et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol. 2005;25:6225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Han YH, Sim HK, Kim SZ, Park WH. Antimycin A as a mitochondrial electron transport inhibitor prevents the growth of human lung cancer A549 cells. Oncol Rep. 2008;20:689–93.

    CAS  PubMed  Google Scholar 

  64. Bretones G, Delgado M, León J. Myc and cell cycle control. Biochim Biophys Acta. 2015;1849:506–16.

    Article  CAS  PubMed  Google Scholar 

  65. Macias E, Rao D, Carbajal S, Kiguchi K, DiGiovanni J. Stat3 binds to mtDNA and regulates mitochondrial gene expression in keratinocytes. J Invest Dermatol. 2014;134:1971–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mao YQ, Houry WA. The role of pontin and reptin in cellular physiology and cancer etiology. Front Mol Biosci. 2017;4:58.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Weng MT, Luo J. The enigmatic ERH protein: its role in cell cycle, RNA splicing and cancer. Protein Cell. 2013;4:807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Garassino MC, Marabese M, Rusconi P, Rulli E, Martelli O, Farina G, et al. Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer. Ann Oncol. 2011;22:235–7.

    Article  CAS  PubMed  Google Scholar 

  70. Ruwanpura SM, McLeod L, Miller A, Jones J, Bozinovski S, Vlahos R, et al. Interleukin-6 promotes pulmonary emphysema associated with apoptosis in mice. Am J Respir Cell Mol Biol. 2011;45:720–30.

    Article  CAS  PubMed  Google Scholar 

  71. Liu YD, Yu L, Ying L, Balic J, Gao H, Deng NT, et al. Toll-like receptor 2 regulates metabolic reprogramming in gastric cancer via superoxide dismutase 2. Int J Cancer. 2019;144:3056–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to D. Gough and S. Fernando (Hudson Institute of Medical Research, Melbourne, Australia) for expert technical assistance and proofreading of the manuscript, as well as A. Vais (Monash Histology Platform, Melbourne, Australia) for immunofluorescence expertise. This work was supported by a research grant awarded by the National Health and Medical Research Council (NHMRC) of Australia to BJJ, as well as the Operational Infrastructure Support Programme by the Victorian Government of Australia. MIS is supported by a Cancer Council Victoria Postdoctoral Fellowship. SA was sponsored by the Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia. BJJ is supported by a NHMRC Senior Medical Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: BJJ. Development of methodology: BJJ. Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): LM, SA, ACW, JJB, LY, JAS, ZP, SR, MIS, BJJ. Analysis and interpretation of data (e.g. statistical analysis, biostatistics, computational analysis): LM, SA, BK, SR, MIS, BJJ. Writing, review, and/or revision of the manuscript: BJJ. Administrative, technical, or material support (i.e. reporting or organising data, constructing databases): BJJ. Study supervision: SR, BJJ.

Corresponding author

Correspondence to Brendan J. Jenkins.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhayyani, S., McLeod, L., West, A.C. et al. Oncogenic dependency on STAT3 serine phosphorylation in KRAS mutant lung cancer. Oncogene 41, 809–823 (2022). https://doi.org/10.1038/s41388-021-02134-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02134-4

This article is cited by

Search

Quick links