Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

B7–H4 is increased in lung adenocarcinoma harboring EGFR-activating mutations and contributes to immunosuppression

Abstract

PD-1/PD-L1 inhibitors have shown clinical benefit in lung adenocarcinoma (LUAD). However, the immunotherapy strategy is less effective in patients with EGFR-activating mutations (EGFR MT). Studies showed that besides low expression of PD-L1, the absence of TILs and distinct expression profile of immune checkpoint molecules might be associated with low response of the patient subset. In this study, we first compared CD8A, GZMB and PRF1 mRNA levels in different LUAD subtypes harboring different driver mutations by dataset analyses and investigated the association between 15 well-defined B7–CD28 family members and driver mutations. The results showed that the decreases in the density and function of CD8+ TILs, CD274 (PD-L1 gene), and CD86 and increases in VTCN1 (B7–H4 gene) and HHLA2 were associated with LUAD with EGFR-activating mutations. Immunohistochemical staining studies further supported that PD-L1 was downregulated and B7–H4 was upregulated in the subtype. Furthermore, PD-L1 expression was positively associated with levels of CD8A and granzyme B, while B7–H4 expression was negatively associated with granzyme B levels. In lung cancer cell lines, EGFR-activating mutations effectively upregulated B7–H4 and downregulated PD-L1. MEK/ERK-pathway activation upregulated B7–H4, and PI3K/Akt activation upregulated PD-L1. EGFR 19Del mutation was associated with inhibition of CD8+ T-cell function, while knocking down B7–H4 could reverse the inhibition, and further showed tumor-growth inhibition and longer survival in vivo. Taken together, this study shed light on that B7–H4 might be an alternative immune-checkpoint molecule and a potential therapeutic target for LUAD with EGFR MT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Correlation of CD8A, GZMB, and PRF1 with driver mutations in LUAD by datasets analysis.
Fig. 2: The association of the 15 well-defined B7–CD28-family members with driver mutations was analyzed by datasets.
Fig. 3: Analysis of IHC staining.
Fig. 4: B7–H4 upregulated by EGFR activation in lung cancer cell lines.
Fig. 5: EGFR-activating mutations regulate B7–H4 and PD-L1 expression through MEK/ERK and PI3K/Akt pathways.
Fig. 6: B7–H4 played an important role in CD8+ T-cell inhibition induced by EGFR MT in vitro.
Fig. 7: Knock down of B7–H4 effectively reversed the CD8+ T-cell inhibition induced by 19Del in vivo.

Similar content being viewed by others

References

  1. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015;372:2521–32.

    Article  CAS  PubMed  Google Scholar 

  2. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med. 2015;373:1803–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl J Med. 2015;373:1627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl J Med. 2016;375:1823–33.

    Article  CAS  PubMed  Google Scholar 

  6. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl J Med. 2015;373:123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Altan M, Pelekanou V, Schalper KA, Toki M, Gaule P, Syrigos K, et al. B7-H3 Expression in NSCLC and its association with B7-H4, PD-L1 and tumor-infiltrating lymphocytes. Clin Cancer Res. 2017;23:5202–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mazzaschi G, Madeddu D, Falco A, Bocchialini G, Goldoni M, Sogni F, et al. Low PD-1 expression in cytotoxic CD8(+) tumor-infiltrating lymphocytes confers an immune-privileged tissue microenvironment in NSCLC with a prognostic and predictive value. Clin Cancer Res. 2018;24:407–19.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng H, Borczuk A, Janakiram M, Ren X, Lin J, Assal A, et al. Wide expression and significance of alternative immune checkpoint molecules, B7x and HHLA2, in PD-L1-negative human lung cancers. Clin Cancer Res. 2018;24:1954–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iizuka A, Nonomura C, Ashizawa T, Kondou R, Ohshima K, Sugino T, et al. A T-cell-engaging B7-H4/CD3-bispecific Fab-scFv antibody targets human breast cancer. Clin Cancer Res. 2019;25:2925–34.

    Article  CAS  PubMed  Google Scholar 

  15. Kasten BB, Ferrone S, Zinn KR, Buchsbaum DJ. B7-H3-targeted radioimmunotherapy of human cancer. Curr Med Chem. 2019;27:4016–38.

    Article  Google Scholar 

  16. Du H, Hirabayashi K, Ahn S, Kren NP, Montgomery SA, Wang X, et al. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells. Cancer Cell. 2019;35:221–237.e228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jung KH, LoRusso P, Burris H, Gordon M, Bang YJ, Hellmann MD, et al. Phase I study of the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) administered with PD-L1 inhibitor (Atezolizumab) in advanced solid tumors. Clin Cancer Res. 2019;25:3220–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harris-Bookman S, Mathios D, Martin AM, Xia Y, Kim E, Xu H, et al. Expression of LAG-3 and efficacy of combination treatment with anti-LAG-3 and anti-PD-1 monoclonal antibodies in glioblastoma. Int J Cancer. 2018;143:3201–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 2016;375:1767–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ni L, Dong C. New B7 family checkpoints in human cancers. Mol Cancer Ther. 2017;16:1203–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Janakiram M, Shah UA, Liu W, Zhao A, Schoenberg MP, Zang X. The third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x, and B7-H3. Immunological Rev. 2017;276:26–39.

    Article  CAS  Google Scholar 

  22. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–w102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao Z, Zhang N, Li A, Zhou B, Chen Y, Chen S, et al. Insulin-like growth factor-1 receptor induces immunosuppression in lung cancer by upregulating B7-H4 expression through the MEK/ERK signaling pathway. Cancer Lett. 2020;485:14–26.

    Article  CAS  PubMed  Google Scholar 

  24. Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, et al. EGFR Mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res. 2016;22:4585–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xing X, Guo J, Ding G, Li B, Dong B, Feng Q, et al. Analysis of PD1, PDL1, PDL2 expression and T cells infiltration in 1014 gastric cancer patients. Oncoimmunology. 2018;7:e1356144.

    Article  PubMed  Google Scholar 

  26. Hatogai K, Fujii S, Kitano S, Kojima T, Daiko H, Yoshino T, et al. Relationship between the immune microenvironment of different locations in a primary tumour and clinical outcomes of oesophageal squamous cell carcinoma. Br J Cancer. 2020;122:413–20.

    Article  CAS  PubMed  Google Scholar 

  27. Yagi T, Baba Y, Ishimoto T, Iwatsuki M, Miyamoto Y, Yoshida N, et al. PD-L1 Expression, tumor-infiltrating lymphocytes, and clinical outcome in patients with surgically resected esophageal cancer. Ann Surg. 2019;269:471–8.

    Article  PubMed  Google Scholar 

  28. Schliekelman MJ, Taguchi A, Zhu J, Dai X, Rodriguez J, Celiktas M, et al. Molecular portraits of epithelial, mesenchymal, and hybrid States in lung adenocarcinoma and their relevance to survival. Cancer Res. 2015;75:1789–1800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Westover D, Zugazagoitia J, Cho BC, Lovly CM, Paz-Ares L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol. 2018;29:i10–i19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krawczyk P, Reszka K, Ramlau R, Powrózek T, Pankowski J, Wojas-Krawczyk K, et al. Prevalence of rare EGFR gene mutations in nonsmall-cell lung cancer: a multicenter study on 3856 Polish Caucasian patients. Ann Oncol. 2016;27:358–9.

    Article  CAS  PubMed  Google Scholar 

  31. Westover D, Zugazagoitia J, Cho BC, Lovly CM, Paz-Ares L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol. 2018;29:i10–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu S, Sha H, Qin X, Chen Y, Li X, Shi M, et al. EGFR E746-A750 deletion in lung cancer represses antitumor immunity through the exosome-mediated inhibition of dendritic cells. Oncogene. 2020;39:2643–57.

    Article  CAS  PubMed  Google Scholar 

  33. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24:1550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee CK, Man J, Lord S, Cooper W, Links M, Gebski V, et al. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a systematic review and meta-analysis. JAMA Oncol. 2018;4:210–6.

    Article  PubMed  Google Scholar 

  35. Lee CK, Man J, Lord S, Links M, Gebski V, Mok T, et al. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-a meta-analysis. J Thorac Oncol. 2017;12:403–7.

    Article  PubMed  Google Scholar 

  36. Chen JA, Riess JW. Optimal management of patients with advanced NSCLC harboring high PD-L1 expression and driver mutations. Curr Treat Options Oncol. 2020;21:60.

    Article  PubMed  Google Scholar 

  37. Oble DA, Loewe R, Yu P, Mihm MC Jr. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma. Cancer Immun. 2009;9:3.

    PubMed  PubMed Central  Google Scholar 

  38. Buder-Bakhaya K, Hassel JC. Biomarkers for clinical benefit of immune checkpoint inhibitor treatment-A review from the melanoma perspective and beyond. Front Immunol. 2018;9:1474.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hamid O, Schmidt H, Nissan A, Ridolfi L, Aamdal S, Hansson J, et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med. 2011;9:204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Toki MI, Mani N, Smithy JW, Liu Y, Altan M, Wasserman B, et al. Immune marker profiling and programmed death ligand 1 expression across NSCLC mutations. J Thorac Oncol. 2018;13:1884–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dong ZY, Zhang JT, Liu SY, Su J, Zhang C, Xie Z, et al. EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Oncoimmunology. 2017;6:e1356145.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen Y, Hu R, Li X, Shi Z, Tian H, Feng J, et al. B7-H4 and HHLA2, members of B7 family, are aberrantly expressed in EGFR mutated lung adenocarcinoma. Pathol Res Pract. 2020;216:153134.

    Article  PubMed  Google Scholar 

  43. Mazzaschi G, Madeddu D, Falco A, Bocchialini G, Goldoni M, Sogni F. et al. Low PD-1 Expression in Cytotoxic CD8(+) Tumor-Infiltrating Lymphocytes Confers an Immune-Privileged Tissue Microenvironment in NSCLC with a Prognostic and Predictive Value. Clin Cancer Res. 2018;24:407–19.

    Article  CAS  PubMed  Google Scholar 

  44. Rousalova I, Krepela E. Granzyme B-induced apoptosis in cancer cells and its regulation (review). Int J Oncol. 2010;37:1361–78.

    CAS  PubMed  Google Scholar 

  45. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl J Med. 2015;372:2018–28.

    Article  PubMed  Google Scholar 

  47. Chen Q, Li T, Yue W. Drug response to PD-1/PD-L1 blockade: based on biomarkers. Onco Targets Ther. 2018;11:4673–83.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Giroux Leprieur E, Dumenil C, Julie C, Giraud V, Dumoulin J, Labrune S, et al. Immunotherapy revolutionises non-small-cell lung cancer therapy: results, perspectives and new challenges. Eur J Cancer. 2017;78:16–23.

    Article  CAS  PubMed  Google Scholar 

  49. Sul J, Blumenthal GM, Jiang X, He K, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist. 2016;21:643–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pai-Scherf L, Blumenthal GM, Li H, Subramaniam S, Mishra-Kalyani PS, He K, et al. FDA approval summary: pembrolizumab for treatment of metastatic non-small cell lung cancer: first-line therapy and beyond. Oncologist. 2017;22:1392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoshida H, Kim YH, Ozasa H, Nagai H, Sakamori Y, Tsuji T, et al. Nivolumab in non-small-cell lung cancer with EGFR mutation. Ann Oncol. 2018;29:777–8.

    Article  CAS  PubMed  Google Scholar 

  52. Haratani K, Hayashi H, Tanaka T, Kaneda H, Togashi Y, Sakai K, et al. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann Oncol. 2017;28:1532–9.

    Article  CAS  PubMed  Google Scholar 

  53. D'Incecco A, Andreozzi M, Ludovini V, Rossi E, Capodanno A, Landi L, et al. PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br J Cancer. 2015;112:95–102.

    Article  CAS  PubMed  Google Scholar 

  54. Gruosso T, Gigoux M, Manem VSK, Bertos N, Zuo D, Perlitch I, et al. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. J Clin Investig. 2019;129:1785–1800.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li J, Lee Y, Li Y, Jiang Y, Lu H, Zang W, et al. Co-inhibitory molecule B7 superfamily member 1 expressed by tumor-infiltrating Myeloid cells induces dysfunction of anti-tumor CD8(+) T cells. Immunity. 2018;48:773–786.e775.

    Article  CAS  PubMed  Google Scholar 

  56. John P, Wei Y, Liu W, Du M, Guan F, Zang X. The B7x immune checkpoint pathway: from discovery to clinical trial. Trends Pharmacol Sci. 2019;40:883–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36:320–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are particularly grateful to Dr. Ying Mou, Jinlei Chen, and Yu Shen for their valuable assistance in flow cytometry. We are also grateful to Dr. Xuefeng Wang for his assistance in mice model. We are grateful to Jialu Wang for his assistance in clinical sample collection.

Funding

This work was supported by National Nature Science Foundation of China (Grant No. 31370872, No. 81402381, and No. 81502454).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: LZ and BZ; Experiment in vitro: YL and QC; Experiment in vivo: FW and YS; Immunohistochemical staining: YL and QC; Dataset analysis: MH; Clinical data collection: FW and JX; Statistical analysis: YL, MH and FW; Drafting of the paper: LZ. All the authors read and approved the final paper.

Corresponding authors

Correspondence to Bin Zhou or Liang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Wu, F., Cao, Q. et al. B7–H4 is increased in lung adenocarcinoma harboring EGFR-activating mutations and contributes to immunosuppression. Oncogene 41, 704–717 (2022). https://doi.org/10.1038/s41388-021-02124-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02124-6

This article is cited by

Search

Quick links