Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Runx3 is required for oncogenic Myc upregulation in p53-deficient osteosarcoma

Abstract

Osteosarcoma (OS) in human patients is characterized by genetic alteration of TP53. Osteoprogenitor-specific p53-deleted mice (OS mice) have been widely used to study the process of osteosarcomagenesis. However, the molecular mechanisms responsible for the development of OS upon p53 inactivation remain largely unknown. In this study, we detected prominent RUNX3/Runx3 expression in human and mouse p53-deficient OS. Myc was aberrantly upregulated by Runx3 via mR1, a consensus Runx site in the Myc promoter, in a manner dependent on p53 deficiency. Reduction of the Myc level by disruption of mR1 or Runx3 knockdown decreased the tumorigenicity of p53-deficient OS cells and effectively suppressed OS development in OS mice. Furthermore, Runx inhibitors exerted therapeutic effects on OS mice. Together, these results show that p53 deficiency promotes osteosarcomagenesis in human and mouse by allowing Runx3 to induce oncogenic Myc expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Runx3 is highly upregulated and oncogenic in p53-deficient OS.
Fig. 2: Myc is a positive target of Runx3 in p53-deficient OS.
Fig. 3: mR1 is a responsible element of Myc upregulation by Runx3.
Fig. 4: mR1 and Runx3 are responsible for development of OS in p53-deficient mice.
Fig. 5: Myc induction by Runx3 is dependent on p53-deficiency.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials. The ChIP-seq/ATAC-seq and RNA-seq data generated in this study were submitted to DDJB sequence read archive (DRA) with accession numbers DRA009517 and DRA011168, respectively.

References

  1. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505:495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bouaoun L, Sonkin D, Ardin M, Hollstein M, Byrnes G, Zavadil J, et al. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data. Hum Mutat. 2016;37:865–76.

    Article  CAS  PubMed  Google Scholar 

  3. Muller PAJ, Vousden KH. Mutant p53 in Cancer: new functions and therapeutic opportunities. Cancer Cell. 2014;25:304–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14:722–35.

    Article  CAS  PubMed  Google Scholar 

  5. Porter DE, Holden ST, Steel CM, Cohen BB, Wallace MR, Reid R. A significant proportion of patients with osteosarcoma may belong to Li-Fraumeni cancer families. J Bone Jt Surg Br Vol. 1992;74:883–6.

    Article  CAS  Google Scholar 

  6. Bougeard G, Renaux-Petel M, Flaman J-M, Charbonnier C, Fermey P, Belotti M, et al. Revisiting Li-Fraumeni Syndrome From TP53 Mutation Carriers. J Clin Oncol. 2015;33:2345–52.

    Article  CAS  PubMed  Google Scholar 

  7. Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014;7:104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI, et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Gene Dev. 2008;22:1662–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berman SD, Calo E, Landman AS, Danielian PS, Miller ES, West JC, et al. Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc Natl Acad Sci. 2008;105:11851–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee TI, Young RA. Transcriptional Regulation and Its Misregulation in Disease. Cell. 2013;152:1237–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grigoriadis A, Schellander K, Wang Z, Wagner E. Osteoblasts are target cells for transformation in c-fos transgenic mice. J Cell Biol. 1993;122:685–701.

    Article  CAS  PubMed  Google Scholar 

  12. Gamberi G, Benassi MS, Bohling T, Ragazzini P, Molendini L, Sollazzo MR, et al. C-myc and c-fos in Human Osteosarcoma: Prognostic Value of mRNA and Protein Expression. Oncology. 1998;55:556–63.

    Article  CAS  PubMed  Google Scholar 

  13. Ito Y, Bae S-C, Chuang LSH. The RUNX family: developmental regulators in cancer. Nat Rev Cancer. 2015;15:81–95.

    Article  CAS  PubMed  Google Scholar 

  14. Levanon D, Groner Y. Structure and regulated expression of mammalian RUNX genes. Oncogene. 2004;23:4211–9.

    Article  CAS  PubMed  Google Scholar 

  15. Bauer O, Sharir A, Kimura A, Hantisteanu S, Takeda S, Groner Y. Loss of Osteoblast Runx3 Produces Severe Congenital Osteopenia. Mol Cell Biol. 2015;35:1097–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted Disruption of Cbfa1 Results in a Complete Lack of Bone Formation owing to Maturational Arrest of Osteoblasts. Cell. 1997;89:755–64.

    Article  CAS  PubMed  Google Scholar 

  17. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, et al. Sustained Loss of a Neoplastic Phenotype by Brief Inactivation of MYC. Science. 2002;297:102–4.

    Article  CAS  PubMed  Google Scholar 

  18. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell. 2013;154:442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pulikkan JA, Hegde M, Ahmad HM, Belaghzal H, Illendula A, Yu J, et al. CBFβ-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia. Cell. 2018;174:172–.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cho SW, Xu J, Sun R, Mumbach MR, Carter AC, Chen YG, et al. Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element. Cell. 2018;173:1398–.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wierstra I, Alves J. The c‐myc Promoter: Still MysterY and Challenge. Adv Cancer Res. 2008;99:113–333.

    Article  PubMed  Google Scholar 

  22. Cunningham L, Finckbeiner S, Hyde RK, Southall N, Marugan J, Yedavalli VRK, et al. Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1–CBFβ interaction. Proc Natl Acad Sci. 2012;109:14592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Illendula A, Gilmour J, Grembecka J, Tirumala VSS, Boulton A, Kuntimaddi A, et al. Small Molecule Inhibitor of CBFβ-RUNX Binding for RUNX Transcription Factor Driven Cancers. Ebiomedicine. 2016;8:117–31.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ottaviano L, Schaefer K, Gajewski M, Huckenbeck W, Baldus S, Rogel U, et al. Molecular characterization of commonly used cell lines for bone tumor research: A trans‐European EuroBoNet effort. Genes Chromosomes Cancer. 2010;49:40–51.

    Article  CAS  PubMed  Google Scholar 

  25. Yamada C, Ozaki T, Ando K, Suenaga Y, Inoue K, Ito Y, et al. RUNX3 Modulates DNA Damage-mediated Phosphorylation of Tumor Suppressor p53 at Ser-15 and Acts as a Co-activator for p53. J Biol Chem. 2010;285:16693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martin JW, Zielenska M, Stein GS, Wijnen AJ, van, Squire JA. The Role of RUNX2 in Osteosarcoma Oncogenesis. Sarcoma. 2010;2011:282745.

    PubMed  PubMed Central  Google Scholar 

  27. Shin MH, He Y, Marrogi E, Piperdi S, Ren L, Khanna C, et al. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells. Plos Genet. 2016;12:e1005884.

    Article  PubMed  PubMed Central  Google Scholar 

  28. van der Deen M, Akech J, Lapointe D, Gupta S, Young DW, Montecino MA, et al. Genomic Promoter Occupancy of Runt-related Transcription Factor RUNX2 in Osteosarcoma Cells Identifies Genes Involved in Cell Adhesion and Motility*. J Biol Chem. 2012;287:4503–17.

    Article  PubMed  Google Scholar 

  29. He Y, de Castro LF, Shin MH, Dubois W, Yang HH, Jiang S, et al. p53 Loss Increases the Osteogenic Differentiation of Bone Marrow Stromal Cells. Stem Cells. 2015;33:1304–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Whittle MC, Izeradjene K, Rani PG, Feng L, Carlson MA, DelGiorno KE, et al. RUNX3 Controls a Metastatic Switch in Pancreatic Ductal Adenocarcinoma. Cell. 2015;161:1345–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature. 2014;511:483–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hosoi H, Niibori-Nambu A, Nah GSS, Bahirvani AG, Mok MMH, Sanda T, et al. Super-enhancers for RUNX3 are required for cell proliferation in EBV-infected B cell lines. Gene. 2021;774:145421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Q-L, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi X-Z, et al. Causal Relationship between the Loss of RUNX3 Expression and Gastric Cancer. Cell. 2002;109:113–24.

    Article  CAS  PubMed  Google Scholar 

  34. Ito K, Liu Q, Salto-Tellez M, Yano T, Tada K, Ida H, et al. RUNX3, A Novel Tumor Suppressor, Is Frequently Inactivated in Gastric Cancer by Protein Mislocalization. Cancer Res. 2005;65:7743–50.

    Article  CAS  PubMed  Google Scholar 

  35. Chuang LSH, Ito K, Ito Y. RUNX Proteins in Development and Cancer. Adv Exp Med Biol. 2017;962:299–320.

    Article  CAS  PubMed  Google Scholar 

  36. Bledsoe KL, McGee‐Lawrence ME, Camilleri ET, Wang X, Riester SM, van Wijnen AJ, et al. RUNX3 Facilitates Growth of Ewing Sarcoma Cells. J Cell Physiol. 2014;229:2049–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bushweller JH. Targeting transcription factors in cancer — from undruggable to reality. Nat Rev Cancer. 2019;19:611–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morita K, Suzuki K, Maeda S, Matsuo A, Mitsuda Y, Tokushige C, et al. Genetic regulation of the RUNX transcription factor family has antitumor effects. J Clin Investig. 2017;127:2815–28.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Date Y, Ito K. Oncogenic RUNX3: a link between p53 Deficiency and MYC Dysregulation. Mol Cells. 2020;43:176–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gabay M, Li Y, Felsher DW. MYC Activation Is a Hallmark of Cancer Initiation and Maintenance. Csh Perspect Med. 2014;4:a014241.

    Google Scholar 

  41. Lancho O, Herranz D. The MYC Enhancer-ome: Long-Range Transcriptional Regulation of MYC in Cancer. Trends Cancer. 2018;4:810–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chuang LSH, Ito K, Ito Y. RUNX family: Regulation and diversification of roles through interacting proteins. Int J Cancer. 2013;132:1260–71.

    Article  CAS  PubMed  Google Scholar 

  43. Sabapathy K, Lane DP. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol. 2018;15:13–30.

    Article  CAS  PubMed  Google Scholar 

  44. Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae S-C, Komori T, et al. Differential Requirements for Runx Proteins in CD4 Repression and Epigenetic Silencing during T Lymphocyte Development. Cell. 2002;111:621–33.

    Article  CAS  PubMed  Google Scholar 

  45. Qin X, Jiang Q, Nagano K, Moriishi T, Miyazaki T, Komori H, et al. Runx2 is essential for the transdifferentiation of chondrocytes into osteoblasts. Plos Genet. 2020;16:e1009169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Naoe Y, Setoguchi R, Akiyama K, Muroi S, Kuroda M, Hatam F, et al. Repression of interleukin-4 in T helper type 1 cells by Runx/Cbfβ binding to the Il4 silencer. J Exp Med. 2007;204:1749–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet. 2001;29:418–25.

    Article  CAS  PubMed  Google Scholar 

  48. de Alboran IM, O’Hagan RC, Gärtner F, Malynn B, Davidson L, Rickert R, et al. Analysis of C-MYC Function in Normal Cells via Conditional Gene-Targeted Mutation. Immunity. 2001;14:45–55.

    Article  PubMed  Google Scholar 

  49. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol. 2015;109:21.29.1–9.

    Article  Google Scholar 

  50. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–5.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bonev B, Cohen NM, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, et al. Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell. 2017;171:557–.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Huang for critical advice on the study; A. Berns and F. W. Alt for providing the p53 and Myc flox mouse lines, respectively; T. Kishino for generating genome-edited mouse lines; and all members of the Biomedical Research Center, Nagasaki University for maintaining mouse lines. This work was supported by KAKENHI/Japan Society for the Promotion of Science (JSPS) grants 26290040 (KI), 18H02972 (KI), and 19K22724 (KI); by the Funding Program for Next Generation World-Leading Researchers LS097 (KI); and by the JSPS Research Fellowship for Young Scientists 18J20543 (YD).

Author information

Authors and Affiliations

Authors

Contributions

KI initiated the study. YD and KI designed the experiments. SO, YD, TU, TI, SK, KO, JT, and KI conducted the experiments. YD performed bioinformatic analyses. IT and TK generated and provided animal materials. SO, YD, and KI wrote the paper. MU and TK coordinated the project. KI supervised the study.

Corresponding author

Correspondence to Kosei Ito.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otani, S., Date, Y., Ueno, T. et al. Runx3 is required for oncogenic Myc upregulation in p53-deficient osteosarcoma. Oncogene 41, 683–691 (2022). https://doi.org/10.1038/s41388-021-02120-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02120-w

This article is cited by

Search

Quick links