Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphorylation of MICAL2 by ARG promotes head and neck cancer tumorigenesis by regulating skeletal rearrangement

Abstract

The actin cytoskeletal architecture provides the structural underpinnings for crucial cellular behaviors. In cancer cells, changes in the actin cytoskeleton may serve as prerequisites for proliferation, invasion, and metastatic dissemination. However, the underlying mechanisms remain largely unknown. Here, we show that MICAL2, which is increased in head and neck squamous cell carcinoma (HNSCC) and inversely associated with patient survival, promotes HNSCC growth, invasion, and migration. MICAL2 serves as a flavoprotein monooxygenase and directly induces actin filament depolymerization by specifically oxidizing the methionine 44 and 47 residues of F-actin. The kinase ARG interacts with MICAL2 and augments MICAL2-mediated actin disassembly. Direct phosphorylation assay and mass spectrometry confirmed that ARG phosphorylates MICAL2 at Tyr445, Tyr463, and Tyr488. Substitution of the Tyr445 or Tyr463 residue of purified recombinant MICAL2-redox with phenylalanine (generating a non-phosphorylatable mutant) abolishes the enhanced MICAL2-mediated F-actin disassembly induced by ARG. Consistently, ectopic expression of non-phosphorylatable MICAL2 mutants (MICAL2Y445F and MICAL2Y463F, not MICAL2Y488F) failed to ameliorate HNSCC cell growth, whereas expression of wild-type MICAL2 or MICAL2Y488F rescued the impaired proliferation induced by MICAL2 knockdown. Moreover, CCG-1423, an inhibitor of MICAL2, was shown to inhibit HNSCC cell proliferation, invasion, and migration. Taken together, our findings indicate that phosphorylation of MICAL2 at Tyr445 and Tyr463 by ARG mediates F-actin disassembly and promotes HNSCC progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MICAL2 is frequently upregulated in HNSCC, and increased MICAL2 expression is correlated with poor prognosis in patients with HNSCC.
Fig. 2: MICAL2 promotes HNSCC growth both in vitro and in vivo.
Fig. 3: MICAL2 enhances the migration and invasion potential of HNSCC cells and promotes p-EMT.
Fig. 4: ARG, a kinase that interacts with MICAL2, is frequently upregulated in HNSCC and correlated with poor prognosis in patients with HNSCC.
Fig. 5: ARG directly phosphorylates MICAL2 and promotes MICAL2-mediated F-actin disassembly.
Fig. 6: Phosphorylation of Tyr445 and Tyr463 is required for the activity of MICAL2.
Fig. 7: The MICAL2 inhibitor CCG-1423 inhibits cell proliferation, invasion, and migration.

Similar content being viewed by others

References

  1. Alto LT, Terman JR. MICALs. Curr Biol. 2018;28:R538–R541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pollard TD, Cooper JA. Actin, a central player in cell shape and movement. Science. 2009;326:1208–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sutherland JD, Witke W. Molecular genetic approaches to understanding the actin cytoskeleton. Curr Opin Cell Biol. 1999;11:142–51.

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  5. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.

    Article  CAS  PubMed  Google Scholar 

  6. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127:679–95.

    Article  CAS  PubMed  Google Scholar 

  7. Mouneimne G, Hansen SD, Selfors LM, Petrak L, Hickey MM, Gallegos LL, et al. Differential remodeling of actin cytoskeleton architecture by profilin isoforms leads to distinct effects on cell migration and invasion. Cancer Cell. 2012;22:615–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fremont S, Hammich H, Bai J, Wioland H, Klinkert K, Rocancourt M, et al. Oxidation of F-actin controls the terminal steps of cytokinesis. Nat Commun. 2017;8:14528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kunda P, Baum B. The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol. 2009;19:174–9.

    Article  CAS  PubMed  Google Scholar 

  10. Ikkai T, Ooi T, Noguchi H. Actin: volume change on transformation of G-form to F-form. Science. 1966;152:1756–7.

    Article  CAS  PubMed  Google Scholar 

  11. Hung RJ, Pak CW, Terman JR. Direct redox regulation of F-actin assembly and disassembly by Mical. Science. 2011;334:1710–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hung RJ, Yazdani U, Yoon J, Wu H, Yang T, Gupta N, et al. Mical links semaphorins to F-actin disassembly. Nature. 2010;463:823–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu H, Yesilyurt HG, Yoon J, Terman JR. The MICALs are a family of F-actin dismantling oxidoreductases conserved from Drosophila to humans. Sci Rep. 2018;8:937.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Grintsevich EE, Yesilyurt HG, Rich SK, Hung RJ, Terman JR, Reisler E. F-actin dismantling through a redox-driven synergy between Mical and cofilin. Nat Cell Biol. 2016;18:876–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uhlen M, Zhang C, Lee S, Sjostedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357:eaan2507.

  16. Zhang Z, Liu R, Jin R, Fan Y, Li T, Shuai Y, et al. Integrating clinical and genetic analysis of perineural invasion in head and neck squamous cell carcinoma. Front Oncol. 2019;9:434.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mariotti S, Barravecchia I, Vindigni C, Pucci A, Balsamo M, Libro R, et al. MICAL2 is a novel human cancer gene controlling mesenchymal to epithelial transition involved in cancer growth and invasion. Oncotarget. 2016;7:1808–25.

    Article  PubMed  Google Scholar 

  18. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2017;171:1611–24. e1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li CF, Chen JY, Ho YH, Hsu WH, Wu LC, Lan HY, et al. Snail-induced claudin-11 prompts collective migration for tumour progression. Nat Cell Biol. 2019;21:251–62.

    Article  CAS  PubMed  Google Scholar 

  20. Yoon J, Kim SB, Ahmed G, Shay JW, Terman JR. Amplification of F-actin disassembly and cellular repulsion by growth factor signaling. Dev Cell. 2017;42:117–29. e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu H, Hung R, Terman J. A simple and efficient method for generating high-quality recombinant Mical enzyme for in vitro assays. Protein Expr Purif. 2016;127:116–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schwyter D, Phillips M, Reisler E. Subtilisin-cleaved actin: polymerization and interaction with myosin subfragment 1. Biochemistry. 1989;28:5889–95.

    Article  CAS  PubMed  Google Scholar 

  23. Evelyn CR, Wade SM, Wang Q, Wu M, Iniguez-Lluhi JA, Merajver SD, et al. CCG-1423: a small-molecule inhibitor of RhoA transcriptional signaling. Mol Cancer Therap. 2007;6:2249–60.

    Article  CAS  Google Scholar 

  24. Lundquist MR, Storaska AJ, Liu TC, Larsen SD, Evans T, Neubig RR, et al. Redox modification of nuclear actin by MICAL-2 regulates SRF signaling. Cell. 2014;156:563–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beuchle D, Schwarz H, Langegger M, Koch I, Aberle H. Drosophila MICAL regulates myofilament organization and synaptic structure. Mech Dev. 2007;124:390–406.

    Article  CAS  PubMed  Google Scholar 

  26. Orr BO, Fetter RD, Davis GW. Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity. Nature. 2017;550:109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Terman JR, Mao T, Pasterkamp RJ, Yu HH, Kolodkin AL. MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion. Cell. 2002;109:887–900.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Deng W, Zhang Y, Sun S, Zhao S, Chen Y, et al. MICAL2 promotes breast cancer cell migration by maintaining epidermal growth factor receptor (EGFR) stability and EGFR/P38 signalling activation. Acta Physiol. 2018;222.

  29. Zhou W, Liu Y, Gao Y, Cheng Y, Chang R, Li X, et al. MICAL2 is a novel nucleocytoplasmic shuttling protein promoting cancer invasion and growth of lung adenocarcinoma. Cancer Lett. 2020;483:75–86.

    Article  CAS  PubMed  Google Scholar 

  30. Hellweg R, Mooneyham A, Chang Z, Shetty M, Emmings E, Iizuka Y, et al. RNA sequencing of carboplatin- and paclitaxel-resistant endometrial cancer cells reveals new stratification markers and molecular targets for cancer treatment. Horm Cancer. 2018;9:326–37.

    Article  CAS  PubMed  Google Scholar 

  31. Ashida S, Furihata M, Katagiri T, Tamura K, Anazawa Y, Yoshioka H, et al. Expression of novel molecules, MICAL2-PV (MICAL2 prostate cancer variants), increases with high Gleason score and prostate cancer progression. Clin Cancer Res. 2006;12:2767–73.

    Article  CAS  PubMed  Google Scholar 

  32. Giridharan SS, Rohn JL, Naslavsky N, Caplan S. Differential regulation of actin microfilaments by human MICAL proteins. J Cell Sci. 2012;125:614–24. Pt 3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Prim. 2020;6:92.

    Article  PubMed  Google Scholar 

  34. Barravecchia I, Mariotti S, Pucci A, Scebba F, De Cesari C, Bicciato S, et al. MICAL2 is expressed in cancer associated neo-angiogenic capillary endothelia and it is required for endothelial cell viability, motility and VEGF response. Biochim Biophys Mol Basis Dis. 2019;1865:2111–24.

    Article  CAS  Google Scholar 

  35. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18:128–34.

    Article  CAS  PubMed  Google Scholar 

  36. Shaul YD, Freinkman E, Comb WC, Cantor JR, Tam WL, Thiru P, et al. Dihydropyrimidine accumulation is required for the epithelial-mesenchymal transition. Cell. 2014;158:1094–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brandt DT, Baarlink C, Kitzing TM, Kremmer E, Ivaska J, Nollau P, et al. SCAI acts as a suppressor of cancer cell invasion through the transcriptional control of beta1-integrin. Nat Cell Biol. 2009;11:557–68.

    Article  CAS  PubMed  Google Scholar 

  38. Medjkane S, Perez-Sanchez C, Gaggioli C, Sahai E, Treisman R. Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol. 2009;11:257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Colicelli J. ABL tyrosine kinases: evolution of function, regulation, and specificity. Sci Signal. 2010;3:re6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Greuber EK, Smith-Pearson P, Wang J, Pendergast AM. Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer. 2013;13:559–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang J, Pendergast AM. The emerging role of ABL kinases in solid tumors. Trends Cancer. 2015;1:110–23.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hayes KE, Walk EL, Ammer AG, Kelley LC, Martin KH, Weed SA. Ableson kinases negatively regulate invadopodia function and invasion in head and neck squamous cell carcinoma by inhibiting an HB-EGF autocrine loop. Oncogene. 2013;32:4766–77.

    Article  CAS  PubMed  Google Scholar 

  43. Gau D, Veon W, Capasso TL, Bottcher R, Shroff S, Roman BL, et al. Pharmacological intervention of MKL/SRF signaling by CCG-1423 impedes endothelial cell migration and angiogenesis. Angiogenesis. 2017;20:663–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kobayashi M, Tokuda K, Kobayashi Y, Yamashiro C, Uchi SH, Hatano M, et al. Suppression of epithelial-mesenchymal transition in retinal pigment epithelial cells by an MRTF-A inhibitor. Investig Ophthalmol Vis Sci. 2019;60:528–37.

    Article  CAS  Google Scholar 

  45. Liu L, Wu X, Xu H, Yu L, Zhang X, Li L, et al. Myocardin-related transcription factor A (MRTF-A) contributes to acute kidney injury by regulating macrophage ROS production. Biochim Biophys Acta Mol Basis Dis. 2018;1864:3109–21.

    Article  CAS  PubMed  Google Scholar 

  46. Ye G, Huang K, Yu J, Zhao L, Zhu X, Yang Q, et al. MicroRNA-647 targets SRF-MYH9 axis to suppress invasion and metastasis of gastric cancer. Theranostics. 2017;7:3338–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang Z, Liu R, Shuai Y, Huang Y, Jin R, Wang X, et al. ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma. Br J Cancer. 2020;122:82–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our sincere appreciation goes out to Professor Ren and Dr. Zhu of the State Key Laboratory of Plant Physiology and Biochemistry of China Agricultural University, for providing technical guidance. We thank the TCGA project for its valuable contributions to HNSCC research. This study was supported by the Natural Science Foundation of China (nos. 81902757, 82073006, and 82002757).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: ZZ and JL. Development of methodology: ZZ, YW and YW. Acquisition of data: ZZ, RL, YW, YW YS, and CK. Analysis and interpretation of data: ZZ, RL, YS and RJ. Writing of the manuscript: ZZ. Study supervision: XW and JL.

Corresponding author

Correspondence to Jingtao Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liu, R., Wang, Y. et al. Phosphorylation of MICAL2 by ARG promotes head and neck cancer tumorigenesis by regulating skeletal rearrangement. Oncogene 41, 334–346 (2022). https://doi.org/10.1038/s41388-021-02101-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02101-z

This article is cited by

Search

Quick links