Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oncogenic KRAS promotes growth of lung cancer cells expressing SLC3A2-NRG1 fusion via ADAM17-mediated shedding of NRG1

Abstract

We previously found the SLC3A2-NRG1 (S-N) fusion gene in a lung adenocarcinoma specimen without known driver mutations and validated this in 59 invasive mucinous adenocarcinoma (IMA) samples. Interestingly, KRAS mutation coexisted (62.5%) in 10 out of 16 NRG1 fusions. In this study, we examined the role of mutant KRAS in regulating the S-N fusion protein in KRAS mutant (H358) and wild-type (Calu-3) cells. KRAS mutation-mediated increase in MEK1/2 and ERK1/2 activity enhanced disintegrin and metalloproteinase (ADAM)17 activity, which increased the shedding of NRG1 from the S-N fusion protein. The cleavage of NRG1 also increased the phosphorylation of ERBB2-ERBB3 heterocomplex receptors and their downstream signalling pathways, including PI3K/Akt/mTOR, even under activated KRAS mutation signalling. The concurrence of S-N fusion and KRAS mutation synergistically increased cell proliferation, colony formation, tumour growth, and the cells’ resistance to EGFR kinase inhibitors more than KRAS mutation alone. Targeted inhibition of MEK1/2, and ADAM17 significantly induced apoptosis singly and when combined with each mutation singly or with chemotherapy in both the concurrent KRAS mutant and S-N fusion xenograft and lung orthotopic models. Taken together, this is the first study to report that KRAS mutation increased NRG1 cleavage from the S-N fusion protein through ADAM17, thereby enhancing the Ras/Raf/MEK/ERK and ERBB/PI3K/Akt/mTOR pathways. Moreover, the coexistence of KRAS mutant and S-N fusion in lung tumours renders them vulnerable to MEK1/2 and/or ADAM17 inhibitors, at least in part, due to their dependency on the strong positive loop between KRAS mutation and S-N fusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coactivation of SLC3A2-NRG1 (S-N) fusion and KRAS mutation increases the proliferation of KRAS mutant cell lines in lung cancer.
Fig. 2: Simultaneous activation of S-N fusion and KRAS mutation results in higher afatinib resistance than the activation of each gene individually.
Fig. 3: S-N fusion and KRAS mutation synergistically augment cancer cell proliferation.
Fig. 4: Induction of ADAM17 by KRAS mutation promotes the cleavage of S-N fusion protein.
Fig. 5: GM6001-mediated inhibition of ADAM17 reduces proliferation of cells harbouring S-N fusion and KRAS mutation.
Fig. 6: Inhibitors of ADAM17 and MEK exhibit anti-tumour effect in a xenograft mouse model of S-N fusion and KRASG12C.
Fig. 7: GM6001 and AZD6244 decreases S-N fusion and KRASG12C-induced lung tumorigenesis.

Similar content being viewed by others

References

  1. Wong MC, Lao XQ, Ho K-F, Goggins WB, Shelly L. Incidence and mortality of lung cancer: Global trends and association with socioeconomic status. Sci Rep. 2017;7:1–9.

    Google Scholar 

  2. Group NM-aC. Preoperative chemotherapy for non-small-cell lung cancer: A systematic review and meta-analysis of individual participant data. Lancet. 2014;383:1561–71.

    Article  Google Scholar 

  3. Bos JL. Ras oncogenes in human cancer: A review. Cancer Res. 1989;49:4682–9.

    CAS  PubMed  Google Scholar 

  4. Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J cell Sci. 2005;118:843–6.

    Article  CAS  PubMed  Google Scholar 

  5. Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, et al. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. 1997;11:2468–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DuPage M, Dooley AL, Jacks T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc. 2009;4:1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: Mission possible? Nat Rev Drug Discov. 2014;13:828–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saad MI, Alhayyani S, McLeod L, Yu L, Alanazi M, Deswaerte V, et al. ADAM 17 selectively activates the IL‐6 trans‐signaling/ERK MAPK axis in KRAS‐addicted lung cancer. EMBO Mol Med. 2019;11:e9976.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zunke F, Rose-John S. The shedding protease ADAM17: Physiology and pathophysiology. Biochimica et Biophysica Acta (BBA)-Mol Cell Res. 2017;1864:2059–70.

    Article  CAS  Google Scholar 

  10. Saad MI, Rose-John S, Jenkins BJ. ADAM17: An emerging therapeutic target for lung cancer. Cancers 2019;11:1218.

    Article  CAS  PubMed Central  Google Scholar 

  11. Van Schaeybroeck S, Kyula JN, Fenton A, Fenning CS, Sasazuki T, Shirasawa S, et al. Oncogenic Kras promotes chemotherapy-induced growth factor shedding via ADAM17. Cancer Res. 2011;71:1071–80.

    Article  PubMed  Google Scholar 

  12. Ardito CM, Grüner BM, Takeuchi KK, Lubeseder-Martellato C, Teichmann N, Mazur PK, et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer cell. 2012;22:304–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shin DH, Lee D, Hong DW, Hong SH, Hwang J-A, Lee BI, et al. Oncogenic function and clinical implications of SLC3A2-NRG1 fusion in invasive mucinous adenocarcinoma of the lung. Oncotarget. 2016;7:69450.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shin DH, Jo JY, Han J-Y. Dual targeting of ERBB2/ERBB3 for the treatment of SLC3A2-NRG1–mediated lung cancer. Mol Cancer Therapeutics. 2018;17:2024–33.

    Article  CAS  Google Scholar 

  15. Travis WD, Brambilla E, Riely GJ. New pathologic classification of lung cancer: Relevance for clinical practice and clinical trials. J Clin Oncol. 2013;31:992–1001.

    Article  CAS  PubMed  Google Scholar 

  16. Jonna S, Feldman RA, Swensen J, Gatalica Z, Korn WM, Borghaei H, et al. Detection of NRG1 gene fusions in solid tumors. Clin Cancer Res. 2019;25:4966–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang JC, Offin M, Falcon CJ, Brown DN, Loomis B, Meng F. et al. Comprehensive molecular and clinicopathologic analysis of 200 pulmonary invasive mucinous adenocarcinomas identifies distinct characteristics of molecular subtypes. Clin Cancer Res. 2021;27:4066–76.

    Article  CAS  PubMed  Google Scholar 

  18. Unni AM, Lockwood WW, Zejnullahu K, Lee-Lin S-Q, Varmus H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. Elife. 2015;4:e06907.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ambrogio C, Barbacid M, Santamaría D. In vivo oncogenic conflict triggered by co-existing KRAS and EGFR activating mutations in lung adenocarcinoma. Oncogene 2017;36:2309–18.

    Article  CAS  PubMed  Google Scholar 

  20. Itahana K, Campisi J, Dimri GP. Methods to detect biomarkers of cellular senescence:the senescence-associated beta-galactosidase assay. Method Mol Biol. 2007;371:21–31.

    Article  CAS  Google Scholar 

  21. Freed DM, Bessman NJ, Kiyatkin A, Salazar-Cavazos E, Byrne PO, Moore JO, et al. EGFR ligands differentially stabilize receptor dimers to specify signaling kinetics. Cell 2017;171:683–95. e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang M-Z, Harris RC. Expression and function of the epidermal growth factor receptor in physiology and disease. Physiological Rev. 2016;96:1025–69.

    Article  CAS  Google Scholar 

  23. Kim TM, Song A, Kim D-W, Kim S, Ahn Y-O, Keam B, et al. Mechanisms of acquired resistance to AZD9291: A mutation-selective, irreversible EGFR inhibitor. J Thorac Oncol. 2015;10:1736–44.

    Article  CAS  PubMed  Google Scholar 

  24. Ma S, Zhang L, Ren Y, Dai W, Chen T, Luo L, et al. Epiregulin confers EGFR-TKI resistance via EGFR/ErbB2 heterodimer in non-small cell lung cancer. Oncogene 2021;40:2596–609.

    Article  CAS  PubMed  Google Scholar 

  25. Van Schaeybroeck S, Kyula JN, Fenton A, Fenning CS, Sasazuki T, Shirasawa S, et al. Oncogenic Kras promotes chemotherapy-induced growth factor shedding via ADAM17. Cancer Res. 2011;71:1071–80.

    Article  PubMed  Google Scholar 

  26. Kim BM. The role of saikosaponins in therapeutic strategies for age-related diseases. Oxidative Med. Cell. Longev. 2018;2018:8275256.

    Article  Google Scholar 

  27. Xu P, Derynck R. Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. Mol cell. 2010;37:551–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kwan JC, Eksioglu EA, Liu C, Paul VJ, Luesch H. Grassystatins A− C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. J medicinal Chem. 2009;52:5732–47.

    Article  CAS  Google Scholar 

  29. Janssens E, Gaublomme D, De Groef L, Darras VM, Arckens L, Delorme N, et al. Matrix metalloproteinase 14 in the zebrafish: An eye on retinal and retinotectal development. PloS one. 2013;8:e52915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng Z-Y, Anurag M, Lei JT, Cao J, Singh P, Peng J, et al. Neurofibromin is an estrogen receptor-α transcriptional co-repressor in breast cancer. Cancer Cell. 2020;37:387–402. e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hames ML, Chen H, Iams W, Aston J, Lovly CM, Horn L. Correlation between KRAS mutation status and response to chemotherapy in patients with advanced non-small cell lung cancer. Lung Cancer. 2016;92:29–34.

    Article  PubMed  Google Scholar 

  32. Greulich H. The genomics of lung adenocarcinoma: Opportunities for targeted therapies. Genes Cancer. 2010;1:1200–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate AJ, Wistuba II, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. Jama. 2014;311:1998–2006.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cisowski J, Sayin V, Liu M, Karlsson C, Bergo M. Oncogene-induced senescence underlies the mutual exclusive nature of oncogenic KRAS and BRAF. Oncogene. 2016;35:1328–33.

    Article  CAS  PubMed  Google Scholar 

  35. You JS, Jones PA. Cancer genetics and epigenetics: Two sides of the same coin? Cancer cell. 2012;22:9–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Torti D, Trusolino L. Oncogene addiction as a foundational rationale for targeted anti‐cancer therapy: Promises and perils. EMBO Mol Med. 2011;3:623–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kamb A. Consequences of nonadaptive alterations in cancer. Mol Biol cell. 2003;14:2201–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sharma SV, Settleman J. Exploiting the balance between life and death: Targeted cancer therapy and “oncogenic shock”. Biochemical Pharmacol. 2010;80:666–73.

    Article  CAS  Google Scholar 

  39. Kaelin WG. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005;5:689–98.

    Article  CAS  PubMed  Google Scholar 

  40. Karreth FA, Tuveson DA. Modelling oncogenic Ras/Raf signalling in the mouse. Curr Opin Genet Dev. 2009;19:4–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759–67.

    Article  CAS  PubMed  Google Scholar 

  42. Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF, Maitra A, et al. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2016;30:355–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, et al. Essential role for oncogenic Ras in tumour maintenance. Nature 1999;400:468–72.

    Article  CAS  PubMed  Google Scholar 

  44. Gschwind A, Hart S, Fischer OM, Ullrich A. TACE cleavage of proamphiregulin regulates GPCR‐induced proliferation and motility of cancer cells. EMBO J. 2003;22:2411–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ni S-S, Zhang J, Zhao W-L, Dong X-C, Wang J-L. ADAM17 is overexpressed in non-small cell lung cancer and its expression correlates with poor patient survival. Tumor Biol. 2013;34:1813–8.

    Article  CAS  Google Scholar 

  46. Zhou B-BS, Peyton M, He B, Liu C, Girard L, Caudler E, et al. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell. 2006;10:39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baumgart A, Seidl S, Vlachou P, Michel L, Mitova N, Schatz N, et al. ADAM17 regulates epidermal growth factor receptor expression through the activation of Notch1 in non–small cell lung cancer. Cancer Res. 2010;70:5368–78.

    Article  CAS  PubMed  Google Scholar 

  48. Sharma A, Bender S, Zimmermann M, Riesterer O, Broggini-Tenzer A, Pruschy MN. Secretome signature identifies ADAM17 as novel target for radiosensitization of non–small cell lung cancer. Clin Cancer Res. 2016;22:4428–39.

    Article  CAS  PubMed  Google Scholar 

  49. Fridman JS, Caulder E, Hansbury M, Liu X, Yang G, Wang Q, et al. Selective inhibition of ADAM metalloproteases as a novel approach for modulating ErbB pathways in cancer. Clin Cancer Res. 2007;13:1892–902.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (NCC-2010070 and 2110340) funded by the National Cancer Centre, and NRF-2021R1F1A1062721 funded by the National Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: DHS and JYH. Acquisition of data: DHS, YGB, SHK, and MYC. Analysis and interpretation of data: DHS, BKC, CYH, SSK. Writing and revision of the paper: DHS.

Corresponding authors

Correspondence to Dong Hoon Shin or Ji-Youn Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, D.H., Kim, S.H., Choi, M. et al. Oncogenic KRAS promotes growth of lung cancer cells expressing SLC3A2-NRG1 fusion via ADAM17-mediated shedding of NRG1. Oncogene 41, 280–292 (2022). https://doi.org/10.1038/s41388-021-02097-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02097-6

This article is cited by

Search

Quick links