Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BPIFB1 inhibits vasculogenic mimicry via downregulation of GLUT1-mediated H3K27 acetylation in nasopharyngeal carcinoma

Abstract

Nasopharyngeal carcinoma (NPC) demonstrates significant regional differences and a high incidence in Southeast Asia and Southern China. Bactericidal/permeability-increasing-fold- containing family B member 1 (BPIFB1) is a relatively specific and highly expressed protein in the nasopharyngeal epithelium. BPIFB1 expression is substantially downregulated in NPC and is significantly associated with poor prognosis in patients with NPC. However, the specific molecular mechanism by which BPIFB1 regulates NPC is not well understood. In this study, we found that BPIFB1 inhibits vasculogenic mimicry by regulating the metabolic reprogramming of NPC. BPIFB1 decreases GLUT1 transcription by downregulating the JNK/AP1 signaling pathway. Altered glycolysis reduces the acetylation level of histone and decreases the expression of vasculogenic mimicry-related genes, VEGFA, VE-cadherin, and MMP2, ultimately leading to the inhibition of vasculogenic mimicry. To our knowledge, this is the first report on the role and specific mechanism of BPIFB1 as a tumor suppressor gene involved in regulating glycolysis and vasculogenic mimicry in NPC. Overall, these results provide a new therapeutic target for NPC diagnosis and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BPIFB1 inhibits vasculogenic mimicry (VM) in nasopharyngeal carcinoma.
Fig. 2: BPIFB1 inhibits glycolysis by downregulating GLUT1.
Fig. 3: BPIFB1 inhibits VM formation by downregulating GLUT1.
Fig. 4: BPIFB1 inhibits H3K27 acetylation by downregulating GLUT1.
Fig. 5: BPIFB1 decreases GLUT1 transcription by downregulating the JNK/AP1 pathway.
Fig. 6: BPIFB1 reduces VM formation via GLUT1 downregulation in vivo.
Fig. 7: Relationship between BPIFB1 and GLUT1, VEGFA, VE-cadherin, and MMP2 in NPC tissues.

Similar content being viewed by others

References

  1. Tu C, Zeng Z, Qi P, Li X, Guo C, Xiong F, et al. Identification of genomic alterations in nasopharyngeal carcinoma and nasopharyngeal carcinoma-derived Epstein-Barr virus by whole-genome sequencing. Carcinogenesis.2018;39:1517–28.

    Article  CAS  PubMed  Google Scholar 

  2. Wei F, Wu Y, Tang L, Xiong F, Guo C, Li X, et al. Trend analysis of cancer incidence and mortality in China. Sci China Life Sci. 2017;60:1271–75.

    Article  PubMed  Google Scholar 

  3. Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet.2019;394:64–80.

    Article  PubMed  Google Scholar 

  4. Wu C, Li M, Meng H, Liu Y, Niu W, Zhou Y, et al. Analysis of status and countermeasures of cancer incidence and mortality in China. Sci China Life Sci. 2019;62:640–47.

    Article  PubMed  Google Scholar 

  5. Zeng Z, Huang H, Huang L, Sun M, Yan Q, Song Y, et al. Regulation network and expression profiles of Epstein-Barr virus-encoded microRNAs and their potential target host genes in nasopharyngeal carcinomas. Sci China Life Sci. 2014;57:315–26.

    Article  CAS  PubMed  Google Scholar 

  6. Zeng Z, Huang H, Zhang W, Xiang B, Zhou M, Zhou Y, et al. Nasopharyngeal carcinoma: advances in genomics and molecular genetics. Sci China Life Sci. 2011;54:966–75.

    Article  PubMed  Google Scholar 

  7. Wu Y, Wang D, Wei F, Xiong F, Zhang S, Gong Z, et al. EBV-miR-BART12 accelerates migration and invasion in EBV-associated cancer cells by targeting tubulin polymerization-promoting protein 1. FASEB J. 2020;34:16205–23.

    Article  CAS  PubMed  Google Scholar 

  8. Fan C, Tang Y, Wang J, Xiong F, Guo C, Wang Y, et al. The emerging role of Epstein-Barr virus encoded microRNAs in nasopharyngeal carcinoma. J Cancer. 2018;9:2852–64.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ge J, Wang J, Xiong F, Jiang X, Zhu K, Wang Y, et al. Epstein-Barr virus-encoded circular RNA circBART2.2 promotes immune escape of nasopharyngeal carcinoma by regulating PD-L1. Cancer Res. 2021;81:5074–88.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao J, Guo C, Xiong F, Yu J, Ge J, Wang H, et al. Single cell RNA-seq reveals the landscape of tumor and infiltrating immune cells in nasopharyngeal carcinoma. Cancer Lett. 2020;477:131–43.

    Article  CAS  PubMed  Google Scholar 

  11. Tang L, Xiong W, Zhang L, Wang D, Wang Y, Wu Y, et al. circSETD3 regulates MAPRE1 through miR-615-5p and miR-1538 sponges to promote migration and invasion in nasopharyngeal carcinoma. Oncogene.2021;40:307–21.

    Article  CAS  PubMed  Google Scholar 

  12. Fan C, Qu H, Xiong F, Tang Y, Tang T, Zhang L, et al. CircARHGAP12 promotes nasopharyngeal carcinoma migration and invasion via ezrin-mediated cytoskeletal remodeling. Cancer Lett. 2021;496:41–56.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou Y, Liao Q, Li X, Wang H, Wei F, Chen J, et al. HYOU1, regulated by LPLUNC1, is up-regulated in nasopharyngeal carcinoma and associated with poor prognosis. J Cancer. 2016;7:367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wei F, Tang L, He Y, Wu Y, Shi L, Xiong F, et al. BPIFB1 (LPLUNC1) inhibits radioresistance in nasopharyngeal carcinoma by inhibiting VTN expression. Cell Death Dis. 2018;9:432.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xiong F, Deng S, Huang HB, Li XY, Zhang WL, Liao QJ, et al. Effects and mechanisms of innate immune molecules on inhibiting nasopharyngeal carcinoma. Chin Med J (Engl). 2019;132:749–52.

    Article  Google Scholar 

  16. Zhang B, Nie X, Xiao B, Xiang J, Shen S, Gong J, et al. Identification of tissue-specific genes in nasopharyngeal epithelial tissue and differentially expressed genes in nasopharyngeal carcinoma by suppression subtractive hybridization and cDNA microarray. Genes Chromosomes Cancer. 2003;38:80–90.

    Article  CAS  PubMed  Google Scholar 

  17. Liao Q, Zeng Z, Guo X, Li X, Wei F, Zhang W, et al. LPLUNC1 suppresses IL-6-induced nasopharyngeal carcinoma cell proliferation via inhibiting the Stat3 activation. Oncogene.2014;33:2098–109.

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Zhou Y, Oyang L, Han Y, Xia L, Lin J, et al. LPLUNC1 stabilises PHB1 by counteracting TRIM21-mediated ubiquitination to inhibit NF-kappaB activity in nasopharyngeal carcinoma. Oncogene.2019;38:5062–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei F, Wu Y, Tang L, He Y, Shi L, Xiong F, et al. BPIFB1 (LPLUNC1) inhibits migration and invasion of nasopharyngeal carcinoma by interacting with VTN and VIM. Br J Cancer. 2018;118:233–47.

    Article  CAS  PubMed  Google Scholar 

  20. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745–70.

    Article  CAS  PubMed  Google Scholar 

  21. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis−correlation in invasive breast carcinoma. N. Engl J Med. 1991;324:1–8.

    Article  CAS  PubMed  Google Scholar 

  22. Folkman J. Proceedings: tumor angiogenesis factor. Cancer Res. 1974;34:2109–13.

    CAS  PubMed  Google Scholar 

  23. Krishna Priya S, Nagare RP, Sneha VS, Sidhanth C, Bindhya S, Manasa P, et al. Tumour angiogenesis-Origin of blood vessels. Int J Cancer. 2016;139:729–35.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, et al. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 2020;39:204.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xiang T, Lin YX, Ma W, Zhang HJ, Chen KM, He GP, et al. Vasculogenic mimicry formation in EBV-associated epithelial malignancies. Nat Commun. 2018;9:5009.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhao J, Du P, Cui P, Qin Y, Hu C, Wu J, et al. LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene.2018;37:4094–109.

    Article  CAS  PubMed  Google Scholar 

  27. Chen Q, Zhang JJ, Ge WL, Chen L, Yuan H, Meng LD, et al. YY1 inhibits the migration and invasion of pancreatic ductal adenocarcinoma by downregulating the FER/STAT3/MMP2 signaling pathway. Cancer Lett. 2019;463:37–49.

    Article  CAS  PubMed  Google Scholar 

  28. Bo H, Gong Z, Zhang W, Li X, Zeng Y, Liao Q, et al. Upregulated long non-coding RNA AFAP1-AS1 expression is associated with progression and poor prognosis of nasopharyngeal carcinoma. Oncotarget.2015;6:20404–18.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science.2016;354:481–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 2015;21:392–402.

    Article  CAS  PubMed  Google Scholar 

  31. Shi L, Tu BP. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol. 2015;33:125–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barnes CE, English DM, Cowley SM. Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem. 2019;63:97–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016;8:a019521.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rosenbloom KR, Dreszer TR, Pheasant M, Barber GP, Meyer LR, Pohl A, et al. ENCODE whole-genome data in the UCSC Genome Browser. Nucleic Acids Res. 2010;38:D620–5.

    Article  CAS  PubMed  Google Scholar 

  35. Bao L, You B, Shi S, Shan Y, Zhang Q, Yue H, et al. Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10. Oncogene.2018;37:2873–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma W, Feng L, Zhang S, Zhang H, Zhang X, Qi X, et al. Induction of chemokine (C-C motif) ligand 5 by Epstein-Barr virus infection enhances tumor angiogenesis in nasopharyngeal carcinoma. Cancer Sci. 2018;109:1710–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen S, Lv L, Zhan Z, Wang X, You Z, Luo X, et al. Silencing of long noncoding RNA SRRM2-AS exerts suppressive effects on angiogenesis in nasopharyngeal carcinoma via activating MYLK-mediated cGMP-PKG signaling pathway. J Cell Physiol. 2020;235:7757–68.

    Article  CAS  PubMed  Google Scholar 

  38. Mahfouz N, Tahtouh R, Alaaeddine N, El Hajj J, Sarkis R, Hachem R, et al. Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1alpha and VEGF receptors. PLoS ONE. 2017;12:e0179202.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zarrin B, Zarifi F, Vaseghi G, Javanmard SH. Acquired tumor resistance to antiangiogenic therapy: mechanisms at a glance. J Res Med Sci. 2017;22:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Loges S, Schmidt T, Carmeliet P. Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes Cancer. 2010;1:12–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang HF, Wang SS, Zheng M, Dai LL, Wang K, Gao XL, et al. Hypoxia promotes vasculogenic mimicry formation by vascular endothelial growth factor A mediating epithelial-mesenchymal transition in salivary adenoid cystic carcinoma. Cell Prolif. 2019;52:e12600.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhu Y, Liu X, Zhao P, Zhao H, Gao W, Wang L. Celastrol suppresses glioma vasculogenic mimicry formation and angiogenesis by blocking the PI3K/Akt/mTOR signaling pathway. Front Pharm. 2020;11:25.

    Article  CAS  Google Scholar 

  43. Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis. J Intern Med. 2013;273:114–27.

    Article  CAS  PubMed  Google Scholar 

  44. Lyu X, Wang J, Guo X, Wu G, Jiao Y, Faleti OD, et al. EBV-miR-BART1-5P activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner to promote glycolysis and angiogenesis in nasopharyngeal carcinoma. PLoS Pathog. 2018;14:e1007484.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xu S, Bai J, Zhuan Z, Li B, Zhang Z, Wu X, et al. EBV-LMP1 is involved in vasculogenic mimicry formation via VEGFA/VEGFR1 signaling in nasopharyngeal carcinoma. Oncol Rep. 2018;40:377–84.

    CAS  PubMed  Google Scholar 

  46. Sabari BR, Zhang D, Allis CD, Zhao Y. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol. 2017;18:90–101.

    Article  CAS  PubMed  Google Scholar 

  47. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science.2009;324:1076–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaelin WG Jr., McKnight SL. Influence of metabolism on epigenetics and disease. Cell.2013;153:56–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Peleg S, Feller C, Ladurner AG, Imhof A. The metabolic impact on histone acetylation and transcription in ageing. Trends Biochem Sci. 2016;41:700–11.

    Article  CAS  PubMed  Google Scholar 

  50. Jacobson RH, Ladurner AG, King DS, Tjian R. Structure and function of a human TAFII250 double bromodomain module. Science.2000;288:1422–5.

    Article  CAS  PubMed  Google Scholar 

  51. Krug B, De Jay N, Harutyunyan AS, Deshmukh S, Marchione DM, Guilhamon P. et al. Pervasive H3K27 acetylation leads to ERV expression and a therapeutic vulnerability in H3K27M gliomas. Cancer Cell. 2019;35:782–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu D, Zhang H, Cong J, Cui M, Ma M, Zhang F, et al. H3K27 acetylation-induced lncRNA EIF3J-AS1 improved proliferation and impeded apoptosis of colorectal cancer through miR-3163/YAP1 axis. J Cell Biochem. 2020;121:1923–33.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang E, Han L, Yin D, He X, Hong L, Si X, et al. H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma. Nucleic Acids Res. 2017;45:3086–101.

    Article  CAS  PubMed  Google Scholar 

  54. Dong H, Hu J, Zou K, Ye M, Chen Y, Wu C, et al. Activation of LncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial-mesenchymal transition by targeting MicroRNA-125b in breast Cancer. Mol Cancer. 2019;18:3.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, et al. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer. 2021;20:7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res. 2018;37:87.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lu J, Tang M, Li H, Xu Z, Weng X, Li J, et al. EBV-LMP1 suppresses the DNA damage response through DNA-PK/AMPK signaling to promote radioresistance in nasopharyngeal carcinoma. Cancer Lett. 2016;380:191–200.

    Article  CAS  PubMed  Google Scholar 

  58. Ju S, Wang F, Wang Y, Ju S. CSN8 is a key regulator in hypoxia-induced epithelial-mesenchymal transition and dormancy of colorectal cancer cells. Mol Cancer. 2020;19:168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (81903138, 81972776, U20A20367), the Overseas Expertize Introduction Project for Discipline Innovation (111 Project, No. 111-2-12), the Natural Science Foundation of Hunan Province (2019JJ50778, 2019JJ50872, 2020JJ4766).

Author information

Authors and Affiliations

Authors

Contributions

XJ performed all Experiments; ZZ designed this study; XD, JW, YM and LS collected tissue samples and the clinical data; FW, SZ, ZG and YH gave guidance on experimental methods; FX, YW, CG, BX, MZ, QL, XL, GL, WX analyzed and interpreted the data; XJ and ZZ drafted the paper. All authors read and approved the final paper.

Corresponding author

Correspondence to Zhaoyang Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Deng, X., Wang, J. et al. BPIFB1 inhibits vasculogenic mimicry via downregulation of GLUT1-mediated H3K27 acetylation in nasopharyngeal carcinoma. Oncogene 41, 233–245 (2022). https://doi.org/10.1038/s41388-021-02079-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02079-8

This article is cited by

Search

Quick links