Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reduction in O-glycome induces differentially glycosylated CD44 to promote stemness and metastasis in pancreatic cancer

Abstract

Aberrant protein glycosylation has been shown to have a significant contribution in aggressive cancer, including pancreatic cancer (PC). Emerging evidence has implicated the involvement of cancer stem cells (CSCs) in PC aggressiveness; however, the contribution of glycosylation on self-renewal properties and maintenance of CSC is understudied. Here, using several in vitro and in vivo models lacking C1GALT1 expression, we identified the role of aberrant O-glycosylation in stemness properties and aggressive PC metastasis. A loss in C1GALT1 was found to result in the truncation of O-glycosylation on several glycoproteins with an enrichment of Tn carbohydrate antigen. Mapping of Tn-bearing glycoproteins in C1GALT1 KO cells identified significant Tn enrichment on CSC glycoprotein CD44. Notably, a loss of C1GALT1 in PC cells was found to enhance CSC features (side population-SP, ALDH1+, and tumorspheres) and self-renewal markers NANOG, SOX9, and KLF4. Furthermore, a loss of CD44 in existing C1GALT1 KO cells decreased NANOG expression and CSC features. We determined that O-glycosylation of CD44 activates ERK/NF-kB signaling, which results in increased NANOG expression in PC cells that facilitated the alteration of CSC features, suggesting that NANOG is essential for PC stemness. Finally, we identified that loss of C1GALT1 expression was found to augment tumorigenic and metastatic potential, while an additional loss of CD44 in these cells reversed the effects. Overall, our results identified that truncation of O-glycans on CD44 increases NANOG activation that mediates increased CSC activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mass spectrometry results identify CD44 as a marker of aberrant glycosylation in PC.
Fig. 2: The loss of C1GALT1 enhances self-renewal markers and features of CSCs.
Fig. 3: CD44 is heavily o-linked with Tn-antigens in aberrant glycosylation of PC.
Fig. 4: Truncation of Tn-antigen o-linked CD44 increases CSC features via NF-κB signaling.
Fig. 5: Tn-antigen truncation of CD44 elevates CSC features and NANOG expression via NF-kB signaling in PC cells.
Fig. 6: O-linked truncation of CD44 enhances in vitro and in vivo tumorigenesis.
Fig. 7: O-glycan truncation of CD44 promotes metastasis of PC.

Similar content being viewed by others

References

  1. Alison MR, Lim SML, Nicholson LJ. Cancer stem cells: problems for therapy? J Pathol. 2011;223:147–61.

    Article  CAS  PubMed  Google Scholar 

  2. Nimmakayala RK, Batra SK, Ponnusamy MP. Unraveling the journey of cancer stem cells from origin to metastasis. Biochi. Biophys Acta (BBA) - Rev Cancer. 2019;1871:50–63.

    Article  CAS  Google Scholar 

  3. Kreso A, Dick, John E. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275–91.

    Article  CAS  PubMed  Google Scholar 

  4. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.

    Article  CAS  PubMed  Google Scholar 

  5. Fang R, Xu F, Shi H, Wu Y, Cao C, Li H, et al. LAMTOR5 raises abnormal initiation of O-glycosylation in breast cancer metastasis via modulating GALNT1 activity. Oncogene. 2019;39:2290–304.

    Article  PubMed  Google Scholar 

  6. Scott E, Munkley J. Glycans as biomarkers in prostate cancer. Int J Mol Sci. 2019;20:1389.

    Article  CAS  PubMed Central  Google Scholar 

  7. Chugh S, Barkeer S, Rachagani S, Nimmakayala RK, Perumal N, Pothuraju R, et al. Disruption of C1galt1 gene promotes development and metastasis of pancreatic adenocarcinomas in mice. Gastroenterology. 2018;155:1608–24.

    Article  CAS  PubMed  Google Scholar 

  8. Chugh S, Meza J, Sheinin YM, Ponnusamy MP, Batra SK. Loss of N-acetylgalactosaminyltransferase 3 in poorly differentiated pancreatic cancer: augmented aggressiveness and aberrant ErbB family glycosylation. Br J Cancer. 2016;114:1376–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gupta R, Leon F, Thompson CM, Nimmakayala R, Karmakar S, Nallasamy P, et al. Global analysis of human glycosyltransferases reveals novel targets for pancreatic cancer pathogenesis. Br J Cancer. 2020;122:1661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Radhakrishnan P, Dabelsteen S, Madsen FB, Francavilla C, Kopp KL, Steentoft C, et al. Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc Natl Acad Sci USA. 2014;111:E4066–E4075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. FFd Beça, Caetano P, Gerhard R, Alvarenga CA, Gomes M, Paredes J, et al. Cancer stem cells markers CD44, CD24 and ALDH1 in breast cancer special histological types. J Clin Pathol. 2013;66:187–91.

    Article  Google Scholar 

  12. Li W, Ma H, Zhang J, Zhu L, Wang C, Yang Y. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep. 2017;7:13856.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang L, Zuo X, Xie K, Wei D The Role of CD44 and Cancer Stem Cells. In: Papaccio G, Desiderio V (eds). Cancer Stem Cells: Methods and Protocols. Springer New York: New York, NY, 2018, pp 31–42.

  14. Barkeer S, Chugh S, Batra SK, Ponnusamy MP. Glycosylation of cancer stem cells: function in stemness, tumorigenesis, and metastasis. Neoplasia. 2018;20:813–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochimica et Biophysica Acta (BBA) - Gen Subj. 2016;1860:1623–39.

    Article  CAS  Google Scholar 

  16. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB. Schjoldager KT-BG et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 2013;32:1478–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Annu Rev Pathol. 2015;10:473–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cummings RD. “Stuck on sugars – how carbohydrates regulate cell adhesion, recognition, and signaling”. Glycoconj J. 2019;36:241–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou S, Schuetz JD, Bunting KD, Colapietro A-M, Sampath J, Morris JJ, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7:1028–34.

    Article  CAS  PubMed  Google Scholar 

  20. Nimmakayala RK, Seshacharyulu P, Lakshmanan I, Rachagani S, Chugh S, Karmakar S, et al. Cigarette smoke induces stem cell features of pancreatic cancer cells via PAF1. Gastroenterology. 2018;155:892–908.e896.

    Article  CAS  PubMed  Google Scholar 

  21. Abel EV, Simeone DM. Biology and clinical applications of pancreatic cancer stem cells. Gastroenterology. 2013;144:1241–8.

    Article  PubMed  Google Scholar 

  22. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183:1797–806.

    Article  CAS  PubMed  Google Scholar 

  23. Vaz AP, Ponnusamy MP, Rachagani S, Dey P, Ganti AK, Batra SK. Novel role of pancreatic differentiation 2 in facilitating self-renewal and drug resistance of pancreatic cancer stem cells. Br J Cancer. 2014;111:486–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Trinchera M, Aronica A, Dall’Olio F. Selectin ligands Sialyl-Lewis a and Sialyl-Lewis x in gastrointestinal cancers. Biology. 2017;6:16.

    Article  PubMed Central  Google Scholar 

  25. Remmers N, Anderson JM, Linde EM, DiMaio DJ, Lazenby AJ, Wandall HH, et al. Aberrant expression of mucin core proteins and O-linked glycans associated with progression of pancreatic cancer. Clin Cancer Res. 2013;19:1981–93.

    Article  CAS  PubMed  Google Scholar 

  26. Dorsett KA, Jones RB, Ankenbauer KE, Hjelmeland AB, Bellis SL. Sox2 promotes expression of the ST6Gal-I glycosyltransferase in ovarian cancer cells. J Ovarian Res. 2019;12:93.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schultz MJ, Holdbrooks AT, Chakraborty A, Grizzle WE, Landen CN, Buchsbaum DJ, et al. The tumor-associated glycosyltransferase ST6Gal-I regulates stem cell transcription factors and confers a cancer stem cell phenotype. Cancer Res. 2016;76:3978–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Freitas D, Campos D, Gomes J, Pinto F, Macedo JA, Matos R, et al. O-glycans truncation modulates gastric cancer cell signaling and transcription leading to a more aggressive phenotype. EBioMedicine. 2019;40:349–62.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rinkenbaugh AL, Baldwin AS. The NF-κB pathway and cancer stem cells. Cells. 2016;5:16.

    Article  PubMed Central  Google Scholar 

  30. Lonardo E, Hermann Patrick C, Mueller M-T, Huber S, Balic A, Miranda-Lorenzo I, et al. Nodal/activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell. 2011;9:433–46.

    Article  CAS  PubMed  Google Scholar 

  31. Thomas D, Sagar S, Caffrey T, Grandgenett PM, Radhakrishnan P. Truncated O-glycans promote epithelial-to-mesenchymal transition and stemness properties of pancreatic cancer cells. J Cell Mol Med. 2019;23:6885–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gill DJ, Tham KM, Chia J, Wang SC, Steentoft C, Clausen H, et al. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc Natl Acad Sci USA. 2013;110:E3152–E3161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mimeault M, Batra SK. Molecular biomarkers of cancer stem/progenitor cells associated with progression, metastases, and treatment resistance of aggressive cancers. Cancer Epidemiol Biomark Prev. 2014;23:234–54.

    Article  CAS  Google Scholar 

  34. Bourguignon LYW, Peyrollier K, Xia W, Gilad E. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem. 2008;283:17635–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaltschmidt C, Banz-Jansen C, Benhidjeb T, Beshay M, Förster C, Greiner J, et al. A role for NF-κB in organ specific cancer and cancer stem cells. Cancers. 2019;11:655.

    Article  CAS  PubMed Central  Google Scholar 

  36. Zakaria N, Mohd Yusoff N, Zakaria Z, Widera D, Yahaya BH. Inhibition of NF-κB signaling reduces the stemness characteristics of lung cancer stem cells. Front Oncol. 2018;8:166.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ju T, Otto VI, Cummings RD. The Tn antigen—structural simplicity and biological complexity. Angew Chem Int Ed. 2011;50:1770–91.

    Article  CAS  Google Scholar 

  38. Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, et al. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol. 2015;35:S25–S54.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ghantous A, Sinjab A, Herceg Z, Darwiche N. Parthenolide: from plant shoots to cancer roots. Drug Discov Today. 2013;18:894–905.

    Article  CAS  PubMed  Google Scholar 

  40. Es-haghi M, Soltanian S, Dehghani H. Perspective: cooperation of nanog, NF-κΒ, and CXCR4 in a regulatory network for directed migration of cancer stem cells. Tumor Biol. 2016;37:1559–65.

    Article  CAS  Google Scholar 

  41. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vaz AP, Deb S, Rachagani S, Dey P, Muniyan S, Lakshmanan I, et al. Overexpression of PD2 leads to increased tumorigenicity and metastasis in pancreatic ductal adenocarcinoma. Oncotarget. 2015;7:3317–31.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Craig Semerad, Victoria B. Smith, and Samantha Wall of the Flow Cytometry Research Facility, University of Nebraska Medical Center, for assisting with flow cytometry. We thank Janice A. Taylor and James R. Talaska of the Advanced Microscopy Core Facility at the University of Nebraska Medical Center for assisting with confocal microscopy. Further, we thank Dr. Vikas Kumar and Dr. Dragana Lagundžin, of the Mass Spectrometry and Proteomics Core Facility at the University of Nebraska Medical Center, for assisting with proteomics. Lastly, we thank Corinn E. Grabow for assistance in technical support. We were supported primarily by the following grants from the National Institutes of Health R01 CA210637, R01 CA206444, P01 CA217798, U01 CA200466, and U01 CA210240. The authors/work in this article were supported, in parts, by the following grants from the National Institutes of Health (R01 CA210637, R01 CA206444, P01 CA217798, U01 CA200466, and U01 CA210240).

Author information

Authors and Affiliations

Authors

Contributions

MPP, SKB, and FL conceived and designed the experiments. FL performed the experiments. RKN, SC, and SK assisted with in vitro experiments. PS, PN, RV, and SR assisted with in vivo experiments. MPP, SKB, FL, and JC analyzed the data. FL and MPP wrote the manuscript.

Corresponding authors

Correspondence to Surinder K. Batra or Moorthy P. Ponnusamy.

Ethics declarations

Competing interests

SKB is one of the co-founders of Sanguine Diagnostics and Therapeutics, Inc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leon, F., Seshacharyulu, P., Nimmakayala, R.K. et al. Reduction in O-glycome induces differentially glycosylated CD44 to promote stemness and metastasis in pancreatic cancer. Oncogene 41, 57–71 (2022). https://doi.org/10.1038/s41388-021-02047-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02047-2

This article is cited by

Search

Quick links