Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RANBP1 promotes colorectal cancer progression by regulating pre-miRNA nuclear export via a positive feedback loop with YAP

A Correction to this article was published on 04 January 2022

This article has been updated

Abstract

Colorectal cancer (CRC) is among the top five most common malignant tumors worldwide and has a high mortality rate. Identification of the mechanism of CRC and potential therapeutic targets is critical for improving survival. In the present study, we observed high expression of RAN binding protein 1 (RANBP1) in CRC tissues. Upregulated RANBP1 expression was strongly associated with TNM stages and was an independent risk factor for poor prognosis. In vitro and in vivo functional experiments demonstrated that RANBP1 promoted the proliferation and invasion of CRC cells and inhibited the apoptosis of CRC cells. Low RANBP1 expression reduced the expression levels of hsa-miR-18a, hsa-miR-183, and hsa-miR-106 microRNAs (miRNAs) by inhibiting the nucleoplasmic transport of precursor miRNAs (pre-miRNAs), thereby promoting the accumulation of the latter in the nucleus and reducing the expression of mature miRNAs. Further experiments and bioinformatic analyses demonstrated that RANBP1 promoted the expression of YAP by regulating miRNAs and the Hippo pathway. We also found that YAP acted as a transcriptional cofactor to activate RANBP1 transcription in combination with TEAD4 transcription factor. Thus, RANBP1 further promoted the progression of CRC by forming a positive feedback loop with YAP. Our results revealed the biological role and mechanism of RANBP1 in CRC for the first time, suggesting that RANBP1 can be used as a diagnostic molecule and a potential therapeutic target in CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RANBP1 is upregulated in CRC tissues and is associated with poor prognosis in CRC patients.
Fig. 2: RANBP1 promotes cell proliferation and invasion in vitro.
Fig. 3: RANBP1 accelerates the proliferation and metastasis of CRC cells in vivo.
Fig. 4: RANBP1 affects miRNA expression in CRC cells.
Fig. 5: RANBP1 regulates precursor miRNA nuclear export.
Fig. 6: RANBP1 regulates the Hippo signaling pathway via miRNA.
Fig. 7: RANBP1 is transcriptionally activated by YAP–TEAD4.

Similar content being viewed by others

Change history

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries (vol 68, pg 394, 2018). Ca-Cancer J Clin. 2020;70:313–313.

    Google Scholar 

  2. Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer commun. 2019;39:22.

  3. Di Fiore B, Ciciarello M, Mangiacasale R, Palena A, Tassin AM, Cundari E, et al. Mammalian RanBP1 regulates centrosome cohesion during mitosis. J cell Sci. 2003;116:3399–411.

    Article  Google Scholar 

  4. Kalab P, Heald R. The RanGTP gradient - a GPS for the mitotic spindle. J cell Sci. 2008;121:1577–86.

    Article  CAS  Google Scholar 

  5. Kehlenbach RH, Dickmanns A, Kehlenbach A, Guan TL, Gerace L. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J Cell Biol. 1999;145:645–57.

    Article  CAS  Google Scholar 

  6. Oh D, Yu CH, Needleman DJ. Spatial organization of the Ran pathway by microtubules in mitosis. Proc Natl Acad Sci USA. 2016;113:8729–34.

    Article  CAS  Google Scholar 

  7. Zhang QM, Huang SS, Luo HR, Zhao X, Wu G, Wu DL. Eight-plex iTRAQ labeling and quantitative proteomic analysis for human bladder cancer. Am J cancer Res. 2017;7:935–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rensen WM, Roscioli E, Tedeschi A, Mangiacasale R, Ciciarello M, Di Gioia SA, et al. RanBP1 downregulation sensitizes cancer cells to taxol in a caspase-3-dependent manner. Oncogene. 2009;28:1748–58.

    Article  CAS  Google Scholar 

  9. Dattilo V, D’Antona L, Talarico C, Capula M, Catalogna G, Iuliano R, et al. SGK1 affects RAN/RANBP1/RANGAP1 via SP1 to play a critical role in pre-miRNA nuclear export: a new route of epigenomic regulation. Sci Rep. 2017;7:45361.

    Article  CAS  Google Scholar 

  10. Kim VN. MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends cell Biol. 2004;14:156–9.

    Article  CAS  Google Scholar 

  11. Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    Article  CAS  Google Scholar 

  12. Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 2015;15:73–79.

    Article  CAS  Google Scholar 

  13. Zhang L, Tang F, Terracciano L, Hynx D, Kohler R, Bichet S, et al. NDR functions as a physiological YAP1 kinase in the intestinal epithelium. Curr Biol: CB. 2015;25:296–305.

    Article  Google Scholar 

  14. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  Google Scholar 

  15. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol-Mech. 2014;9:287–314.

    Article  Google Scholar 

  16. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  Google Scholar 

  17. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang QQ, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451:147–U143.

    Article  CAS  Google Scholar 

  18. Lu YY, Zhao XD, Liu Q, Li CX, Graves-Deal R, Cao Z, et al. IncRNA MIR100HG-derived miR-100 and miR-125b m ediate cetuximab resistance via Wnt/beta-catenin signaling. Nat Med. 2017;23:1331–+.

    Article  CAS  Google Scholar 

  19. Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis (vol 464, pg 1196, 2010). Nature. 2010;467:356–356.

    Article  CAS  Google Scholar 

  20. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Bio. 2005;6:376–85.

    Article  CAS  Google Scholar 

  21. Lin SB, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15:321–33.

    Article  CAS  Google Scholar 

  22. Lee Y, Kim M, Han JJ, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. Embo J. 2004;23:4051–60.

    Article  CAS  Google Scholar 

  23. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, et al. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–40.

    Article  CAS  Google Scholar 

  24. Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432:231–5.

    Article  CAS  Google Scholar 

  25. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17:3011–6.

    Article  CAS  Google Scholar 

  26. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303:95–98.

    Article  CAS  Google Scholar 

  27. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–6.

    Article  CAS  Google Scholar 

  28. Muralidhar B, Winder D, Murray M, Palmer R, Barbosa-Morais N, Saini H, et al. Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles. J Pathol. 2011;224:496–507.

    Article  CAS  Google Scholar 

  29. Shu GS, Yang ZL, Liu DC. Immunohistochemical study of Dicer and Drosha expression in the benign and malignant lesions of gallbladder and their clinicopathological significances. Pathol Res Pr. 2012;208:392–7.

    Article  CAS  Google Scholar 

  30. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J, et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev. 2009;23:2700–4.

    Article  CAS  Google Scholar 

  31. Wagh PK, Gardner MA, Ma XL, Callahan M, Shannon JM, Wert SE, et al. Cell-and developmental stage-specific Dicer1 ablation in the lung epithelium models cystic pleuropulmonary blastoma. J Pathol. 2015;236:41–52.

    Article  CAS  Google Scholar 

  32. Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R, et al. A genetic defect in exportin-5 traps precursor micrornas in the nucleus of cancer cells. Cancer cell. 2010;18:303–15.

    Article  CAS  Google Scholar 

  33. Shigeyasu K, Okugawa Y, Toden S, Boland CR, Goel A. Exportin-5 functions as an oncogene and a potential therapeutic target in colorectal cancer. Clin Cancer Res. 2017;23:1312–22.

    Article  CAS  Google Scholar 

  34. Mo JS, Park HW, Guan KL. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 2014;15:642–56.

    Article  CAS  Google Scholar 

  35. Zhou QW, Hou ZB, Zuo SY, Zhou X, Feng YD, Sun Y, et al. LUCAT1 promotes colorectal cancer tumorigenesis by targeting the ribosomal protein L40-MDM2-p53 pathway through binding with UBA52. Cancer Sci. 2019;110:1194–207.

    Article  CAS  Google Scholar 

  36. Detre S, Saclani Jotti G, Dowsett M. A “quickscore” method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas. J Clin Pathol. 1995;48:876–8.

    Article  CAS  Google Scholar 

  37. Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-Esfahani S, et al. Cutoff Finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PloS one. 2012;7:e51862.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 81972288) and the General Project of the Natural Science Foundation of Jiangsu Province (no. BK20191353).

Author information

Authors and Affiliations

Authors

Contributions

XY designed the study and wrote the manuscript. DZ and SZ developed the methodology and performed the analyses. MC and CZ collected and analyzed the clinical data. XX performed the statistical analysis. YL and SD performed the bioinformatics analysis. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoqin Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, D., Cao, M., Zuo, S. et al. RANBP1 promotes colorectal cancer progression by regulating pre-miRNA nuclear export via a positive feedback loop with YAP. Oncogene 41, 930–942 (2022). https://doi.org/10.1038/s41388-021-02036-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02036-5

This article is cited by

Search

Quick links