Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CEMIP, a novel adaptor protein of OGT, promotes colorectal cancer metastasis through glutamine metabolic reprogramming via reciprocal regulation of β-catenin

Abstract

Metastasis is the leading cause of colorectal cancer (CRC)-induced death. However, the underlying molecular mechanisms of CRC metastasis are poorly understood. Metabolic reprogramming is an intrinsic feature of cancer, which have complicated effects on cancer metastasis. Here, we find that a novel metastasis-related protein, cell migration-inducing and hyaluronan-binding protein (CEMIP), can act as a novel adaptor protein of O-GlcNAc transferase (OGT) to promote CRC metastasis through glutamine metabolic reprogramming. Mechanistically, CEMIP interacts with OGT and β-catenin, which leads to elevated O-GlcNAcylation of β-catenin and enhanced β-catenin nuclear translocation from cytomembrane. Furthermore, accumulated β-catenin in nucleus enhances the transcription of CEMIP to reciprocally regulate β-catenin and contributes to over-expression of glutaminase 1 and glutamine transporters (SLC1A5 and SLC38A2). Combinational inhibition of CEMIP and glutamine metabolism could dramatically attenuate the metastasis of CRC in vivo. Collectively, this study reveals the importance of glutamine metabolic reprogramming in CEMIP-induced CRC metastasis, indicating the great potential of CEMIP and glutamine metabolism for CRC metastasis prevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CEMIP-mediated CRC metastasis depends on glutamine.
Fig. 2: CEMIP regulates glutamine metabolic reprogramming.
Fig. 3: CEMIP-mediated CRC metastasis is dependent on β-catenin.
Fig. 4: CEMIP enhances glutamine metabolic reprogramming via reciprocal regulation of β-catenin.
Fig. 5: CEMIP regulates shuttle of β-catenin between cytomembrane and nucleus.
Fig. 6: CEMIP promotes detachment of β-catenin-cadherins complex via elevated O-GlcNAcylation of β-catenin.
Fig. 7: CEMIP interacts with β-catenin and OGT.
Fig. 8: Combinational inhibition of CEMIP and glutamine metabolism prevent CRC metastasis.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  2. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394:1467–80.

    Article  PubMed  Google Scholar 

  3. Yoshida H, Nagaoka A, Kusaka-Kikushima A, Tobiishi M, Kawabata K, Sayo T, et al. KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. Proc Natl Acad Sci USA. 2013;110:5612–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tiwari A, Schneider M, Fiorino A, Haider R, Okoniewski MJ, Roschitzki B, et al. Early insights into the function of KIAA1199, a markedly overexpressed protein in human colorectal tumors. PLoS One. 2013;8:e69473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao L, Zhang DJ, Shen Q, Jin M, Lin ZY, Ma H, et al. KIAA1199 promotes metastasis of colorectal cancer cells via microtubule destabilization regulated by a PP2A/stathmin pathway. Oncogene. 2019;38:935–49.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang D, Zhao L, Shen Q, Lv Q, Jin M, Ma H, et al. Down-regulation of KIAA1199/CEMIP by miR-216a suppresses tumor invasion and metastasis in colorectal cancer. Int J Cancer. 2017;140:2298–309.

    Article  CAS  PubMed  Google Scholar 

  7. Evensen NA, Kuscu C, Nguyen HL, Zarrabi K, Dufour A, Kadam P, et al. Unraveling the role of KIAA1199, a Novel Endoplasmic Reticulum Protein, In Cancer Cell Migration. J Natl Cancer Inst. 2013;105:1402–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shostak K, Zhang X, Hubert P, Goktuna SI, Jiang ZS, Klevernic I, et al. NF-kappa B-induced KIAA1199 promotes survival through EGFR signalling. Nat Commun. 2014;5:5232.

    Article  CAS  PubMed  Google Scholar 

  9. Tang ZF, Li CW, Kang BX, Gao G, Li C, Zhang ZM. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schild T, Low V, Blenis J, Gomes AP. Unique metabolic adaptations dictate distal organ-specific metastatic colonization. Cancer Cell. 2018;33:347–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer. 2021;21:162–80.

    Article  CAS  PubMed  Google Scholar 

  12. Wei Q, Qian Y, Yu J, Wong CC. Metabolic rewiring in the promotion of cancer metastasis: mechanisms and therapeutic implications. Oncogene. 2020;39:6139–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Investig. 2013;123:3678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:619–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharma NS, Gupta VK, Garrido VT, Hadad R, Durden BC, Kesh K, et al. Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J Clin Invest. 2020;130:451–65.

    Article  CAS  PubMed  Google Scholar 

  16. Yoo HC, Park SJ, Nam M, Kang J, Kim K, Yeo JH, et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. 2020;31:267–83.e212.

    Article  CAS  PubMed  Google Scholar 

  17. Broer A, Rahimi F, Broer S. Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. J Biol Chem. 2016;291:13194–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morotti M, Zois CE, El-Ansari R, Craze ML, Rakha EA, Fan SJ, et al. Increased expression of glutamine transporter SNAT2/SLC38A2 promotes glutamine dependence and oxidative stress resistance, and is associated with worse prognosis in triple-negative breast cancer. Br J Cancer. 2021;124:494–505.

    Article  CAS  PubMed  Google Scholar 

  19. Schulte ML, Fu A, Zhao P, Li J, Geng L, Smith ST, et al. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat Med. 2018;24:194–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ding MC, Bu X, Li ZH, Xu HK, Feng L, Hu JB, et al. NDRG2 ablation reprograms metastatic cancer cells towards glutamine dependence via the induction of ASCT2. Int J Biol Sci. 2020;16:3100–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762–U100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mafra ACP, Dias SMG. Several faces of glutaminase regulation in cells. Cancer Res. 2019;79:1302–4.

    Article  CAS  PubMed  Google Scholar 

  23. Shen YA, Hong JX, Asaka R, Asaka S, Hsu FC, Rahmanto YS, et al. Inhibition of the MYC-regulated glutaminase metabolic axis is an effective synthetic lethal approach for treating chemoresistant ovarian cancers. Cancer Res. 2020;80:4514–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen C, Lu YC, Liu J, Li LS, Zhao N, Lin BY. Genome-wide ChIP-seq analysis of TCF4 binding regions in colorectal cancer cells. International Journal Of. Clin Exp Med. 2014;7:4253–U1510.

    Google Scholar 

  25. Duong HQ, Nemazanyy I, Rambow F, Tang SC, Delaunay S, Tharun L, et al. The endosomal protein CEMIP links WNT signaling to MEK1-ERK1/2 activation in selumetinib-resistant intestinal organoids. Cancer Res. 2018;78:4533–48.

    Article  CAS  PubMed  Google Scholar 

  26. Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H, et al. Transcriptome profile of human colorectal adenomas. Mol Cancer Res. 2007;5:1263–75.

    Article  CAS  PubMed  Google Scholar 

  27. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science. 1997;275:1787–90.

    Article  CAS  PubMed  Google Scholar 

  28. Behrens J. Cadherins and catenins: role in signal transduction and tumor progression. Cancer Metastasis Rev. 1999;18:15–30.

    Article  CAS  PubMed  Google Scholar 

  29. Ha JR, Hao L, Venkateswaran G, Huang YH, Garcia E, Persad S. beta-catenin is O-GlcNAc glycosylated at Serine 23: implications for beta-catenin’s subcellular localization and transactivator function. Exp Cell Res. 2014;321:153–66.

    Article  CAS  PubMed  Google Scholar 

  30. Sayat R, Leber B, Grubac V, Wiltshire L, Persad S. O-GlcNAc-glycosylation of beta-catenin regulates its nuclear localization and transcriptional activity. Exp Cell Res. 2008;314:2774–87.

    Article  CAS  PubMed  Google Scholar 

  31. Kasprowicz A, Spriet C, Terryn C, Rigolot V, Hardiville S, Alteen MG, et al. Exploring the potential of beta-catenin O-GlcNAcylation by using fluorescence-based engineering and imaging. Molecules. 2020;25:4501.

  32. Gao S, Miao Y, Liu Y, Liu X, Fan X, Lin Y, et al. Reciprocal regulation between O-GlcNAcylation and beta-catenin facilitates cell viability and inhibits apoptosis in liver cancer. DNA Cell Biol. 2019;38:286–96.

    Article  CAS  PubMed  Google Scholar 

  33. Olivier-Van Stichelen S, Guinez C, Mir AM, Perez-Cervera Y, Liu C, Michalski JC, et al. The hexosamine biosynthetic pathway and O-GlcNAcylation drive the expression of beta-catenin and cell proliferation. Am J Physiol Endocrinol Metab. 2012;302:E417–24.

    Article  CAS  PubMed  Google Scholar 

  34. Naka Y, Okada T, Nakagawa T, Kobayashi E, Kawasaki Y, Tanaka Y, et al. Enhancement of O-linked N-acetylglucosamine modification promotes metastasis in patients with colorectal cancer and concurrent type 2 diabetes mellitus. Oncol Let.t 2020;20:1171–8.

    Article  CAS  Google Scholar 

  35. Zhou L, Luo M, Cheng LJ, Li RN, Liu B, Linghu H. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) promotes the EMT of serous ovarian cancer by activating the hexosamine biosynthetic pathway to increase the nuclear location of beta-catenin. Pathol Res Pract. 2019;215:152681.

    Article  CAS  PubMed  Google Scholar 

  36. Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446:1017–22.

    Article  CAS  PubMed  Google Scholar 

  37. Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 2019;20:1083–97.

    Article  CAS  PubMed  Google Scholar 

  38. Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell. 2000;103:311–20.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Wang X. Targeting the Wnt/beta-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13:165.

  40. Birkenkamp-Demtroder K, Maghnouj A, Mansilla F, Thorsen K, Andersen CL, Oster B, et al. Repression of KIAA1199 attenuates Wnt-signalling and decreases the proliferation of colon cancer cells. Br J Cancer. 2011;105:552–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang G, Fang X, Yang Y, Song Y. Silencing of CEMIP suppresses Wnt/beta-catenin/Snail signaling transduction and inhibits EMT program of colorectal cancer cells. Acta Histochem. 2018;120:56–63.

    Article  CAS  PubMed  Google Scholar 

  42. Cheung WD, Hart GW. AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. J Biol Chem. 2008;283:13009–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maclean KH, Keller UB, Rodriguez-Galindo C, Nilsson JA, Cleveland JL. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL. Mol Cell Biol. 2003;23:7256–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang P, Song Y, Sun Y, Li X, Chen L, Yang L, et al. AMPK/GSK3beta/beta-catenin cascade-triggered overexpression of CEMIP promotes migration and invasion in anoikis-resistant prostate cancer cells by enhancing metabolic reprogramming. FASEB J. 2018;32:3924–35.

    Article  CAS  PubMed  Google Scholar 

  45. Coller HA, Grandori C, Tamayo P, Colbert T, Lander ES, Eisenman RN, et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci USA. 2000;97:3260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (81874061 to TZ, 81702392 to LZ, and 81903103 to DZ).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: QLH, LZ, and TZ. Acquisition of data: QLH, BYZ, and GJX. Analysis and interpretation of data: QLH, BYZ, GJX, LQW, and HHW. Writing, review, and/or revision of the manuscript: QLH, BYZ, GJX, LQW, HHW, ZYL, DDY, JHR, DJZ, LZ, and TZ.

Corresponding authors

Correspondence to Lei Zhao or Tao Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Q., Zhang, B., Xu, G. et al. CEMIP, a novel adaptor protein of OGT, promotes colorectal cancer metastasis through glutamine metabolic reprogramming via reciprocal regulation of β-catenin. Oncogene 40, 6443–6455 (2021). https://doi.org/10.1038/s41388-021-02023-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02023-w

This article is cited by

Search

Quick links