Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HOTAIR/Sp1/miR-199a critically regulates cancer stemness and malignant progression of cutaneous squamous cell carcinoma

Abstract

The long non-coding RNA (lncRNA), HOX antisense intergenic RNA (HOTAIR) is a well-characterized oncogene in multiple human cancers, but not in cutaneous squamous cell carcinoma (CSCC). In this study, we focused on investigating the potential role of HOTAIR in stemness of CSCC. By measuring its expression using RT-qPCR in CSCC vs. normal tissues, as well as in CSCC cell lines A431 or SCC13, A431- or SCC13-derived CSCC stem cells (CSCSCs), and normal skin fibroblasts (HSFs), we detected higher expression of HOTAIR in CSCC than in normal tissues, in recurrent than in non-recurrent CSCC tissues, in CSCCs and CSCSCs than in HSFs, and particularly, in CSCSCs than in CSCCs. Kaplan–Meier analysis suggested that higher expression of HOTAIR was positively correlated with worse overall survival of CSCC patients. Functional assays on colony formation, EdU incorporation, sphere formation, western blot on stem-cell biomarkers, and in vivo models showed that HOTAIR was essential in maintaining multiple stem cell phenotypes of CSCSCs in vitro and in vivo xenograft growth as well as metastasis. Mechanistically, HOTAIR directly interacted with and up-regulated Sp1. Sp1 then induced DNMT1-mediated promoter methylation and direct transcriptional repression of miR-199a-5p. Targeting Sp1 or DNMT1 further boosted the in vivo anti-tumor and anti-metastasis activities of targeting HOTAIR. In conclusion, HOTAIR, by up-regulating Sp1 and targeting miR-199a, promotes stemness and progression of CSCC. Targeting HOTAIR, Sp1 or the underlying mechanisms may thus benefit CSCC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HOTAIR was up-regulated in CSCC tissues and associated with worse prognosis.
Fig. 2: HOTAIR expression was up-regulated in A431-derived CSCSCs.
Fig. 3: HOTAIR essentially maintained the stem cell features of A431-derived CSCSCs.
Fig. 4: HOTAIR knockdown suppressed xenograft growth and experimental metastasis in vivo.
Fig. 5: HOTAIR directly interacted with Sp1 and up-regulated its expression.
Fig. 6: miR-199a expression was inhibited by DNMT1-mediated promoter methylation.
Fig. 7: Sp1 inhibited miR-199a expression through Sp1-dependent methylation and direct transcriptional repression.
Fig. 8: Co-targeting HOTAIR with Sp1 or DNMT1 inhibited in vivo xenograft growth and metastasis.
Fig. 9: Schematic graph of proposed pathway in CSCC progression.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Burton KA, Ashack KA, Khachemoune A. Cutaneous squamous cell carcinoma: a review of high-risk and metastatic disease. Am J Clin Dermatol. 2016;17:491–508.

    Article  PubMed  Google Scholar 

  2. Wang Y, Sun B, Wen X, Hao D, Du D, He G, et al. The roles of lncRNA in cutaneous squamous cell carcinoma. Front Oncol. 2020;10:158.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Koh SP, Brasch HD, de Jongh J, Itinteang T, Tan ST. Cancer stem cell subpopulations in moderately differentiated head and neck cutaneous squamous cell carcinoma. Heliyon. 2019;5:e02257.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kokko LL, Hurme S, Maula SM, Alanen K, Grenman R, Kinnunen I, et al. Significance of site-specific prognosis of cancer stem cell marker CD44 in head and neck squamous-cell carcinoma. Oral Oncol. 2011;47:510–6.

    Article  CAS  PubMed  Google Scholar 

  5. Olivero C, Morgan H, Patel GK. Identification of human cutaneous squamous cell carcinoma cancer stem cells. Methods Mol Biol. 2019;1879:415–33.

    Article  CAS  PubMed  Google Scholar 

  6. Deng J, Yang M, Jiang R, An N, Wang X, Liu B. Long non-coding RNA HOTAIR regulates the proliferation, self-renewal capacity, tumor formation and migration of the cancer stem-like cell (CSC) subpopulation enriched from breast cancer cells. PLoS ONE. 2017;12:e0170860.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tang Q, Hann SS. HOTAIR: an oncogenic long non-coding RNA in human cancer. Cell Physiol Biochem. 2018;47:893–913.

    Article  CAS  PubMed  Google Scholar 

  8. Sand M, Bechara FG, Sand D, Gambichler T, Hahn SA, Bromba M, et al. Expression profiles of long noncoding RNAs in cutaneous squamous cell carcinoma. Epigenomics. 2016;8:501–18.

    Article  CAS  PubMed  Google Scholar 

  9. Yu GJ, Sun Y, Zhang DW, Zhang P. Long non-coding RNA HOTAIR functions as a competitive endogenous RNA to regulate PRAF2 expression by sponging miR-326 in cutaneous squamous cell carcinoma. Cancer Cell Int. 2019;19:270.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Biddle A, Liang X, Gammon L, Fazil B, Harper LJ, Emich H, et al. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res. 2011;71:5317–26.

    Article  CAS  PubMed  Google Scholar 

  11. Wang SH, Zhou JD, He QY, Yin ZQ, Cao K, Luo CQ. MiR-199a inhibits the ability of proliferation and migration by regulating CD44-Ezrin signaling in cutaneous squamous cell carcinoma cells. Int J Clin Exp Pathol. 2014;7:7131–41.

    PubMed  PubMed Central  Google Scholar 

  12. Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol. 2019;234:8381–95.

    Article  CAS  PubMed  Google Scholar 

  13. Wu J, Tang Q, Ren X, Zheng F, He C, Chai X, et al. Reciprocal interaction of HOTAIR and SP1 together enhance the ability of Xiaoji decoction and gefitinib to inhibit EP4 expression. J Ethnopharmacol. 2019;237:128–40.

    Article  CAS  PubMed  Google Scholar 

  14. Chen BF, Gu S, Suen YK, Li L, Chan WY. microRNA-199a-3p, DNMT3A, and aberrant DNA methylation in testicular cancer. Epigenetics. 2014;9:119–28.

    Article  CAS  PubMed  Google Scholar 

  15. Shen J, Wang S, Siegel AB, Remotti H, Wang Q, Sirosh I, et al. Genome-wide expression of MicroRNAs is regulated by DNA methylation in hepatocarcinogenesis. Gastroenterol Res Pr. 2015;2015:230642.

    Google Scholar 

  16. Kishikawa S, Murata T, Kimura H, Shiota K, Yokoyama KK. Regulation of transcription of the Dnmt1 gene by Sp1 and Sp3 zinc finger proteins. Eur J Biochem. 2002;269:2961–70.

    Article  CAS  PubMed  Google Scholar 

  17. Lin RK, Wu CY, Chang JW, Juan LJ, Hsu HS, Chen CY, et al. Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res. 2010;70:5807–17.

    Article  CAS  PubMed  Google Scholar 

  18. Hervouet E, Peixoto P, Delage-Mourroux R, Boyer-Guittaut M, Cartron PF. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics. 2018;10:17.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Beishline K, Azizkhan-Clifford J. Sp1 and the ‘hallmarks of cancer’. FEBS J. 2015;282:224–58.

    Article  CAS  PubMed  Google Scholar 

  20. Kim BK, Kim I, Yoon SK. Identification of miR-199a-5p target genes in the skin keratinocyte and their expression in cutaneous squamous cell carcinoma. J Dermatol Sci. 2015;79:137–47.

    Article  CAS  PubMed  Google Scholar 

  21. Lu RH, Xiao ZQ, Zhou JD, Yin CQ, Chen ZZ, Tang FJ, et al. MiR-199a-5p represses the stemness of cutaneous squamous cell carcinoma stem cells by targeting Sirt1 and CD44ICD cleavage signaling. Cell Cycle. 2020;19:1–14.

    Article  CAS  PubMed  Google Scholar 

  22. Wang S, Cao KE, He Q, Yin Z, Zhou J. miR-199a-5p induces cell invasion by suppressing E-cadherin expression in cutaneous squamous cell carcinoma. Oncol Lett. 2016;12:97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jian Z, Strait A, Jimeno A, Wang XJ. Cancer stem cells in squamous cell carcinoma. J Invest Dermatol. 2017;137:31–7.

    Article  CAS  PubMed  Google Scholar 

  24. Prieto VG, Reed JA, McNutt NS, Bogdany JK, Lugo J, Shea CR. Differential expression of CD44 in malignant cutaneous epithelial neoplasms. Am J Dermatopathol. 1995;17:447–51.

    Article  CAS  PubMed  Google Scholar 

  25. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA. 2007;104:973–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu J, Ma L, Xu J, Liu C, Zhang J, Liu J, et al. Spheroid body-forming cells in the human gastric cancer cell line MKN-45 possess cancer stem cell properties. Int J Oncol. 2013;42:453–9.

    Article  CAS  PubMed  Google Scholar 

  27. Gao S, Zhou B, Li H, Huang X, Wu Y, Xing C, et al. Long noncoding RNA HOTAIR promotes the self-renewal of leukemia stem cells through epigenetic silencing of p15. Exp Hematol. 2018;67:32–40 e3.

    Article  CAS  PubMed  Google Scholar 

  28. Padua Alves C, Fonseca AS, Muys BR, de Barros ELBR, Burger MC, de Souza JE, et al. Brief report: The lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cell lines. Stem Cells. 2013;31:2827–32.

    Article  PubMed  Google Scholar 

  29. Dou J, Ni Y, He X, Wu D, Li M, Wu S, et al. Decreasing lncRNA HOTAIR expression inhibits human colorectal cancer stem cells. Am J Transl Res. 2016;8:98–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu MY, Liao YW, Chen PY, Hsieh PL, Fang CY, Wu CY, et al. Targeting LncRNA HOTAIR suppresses cancer stemness and metastasis in oral carcinomas stem cells through modulation of EMT. Oncotarget. 2017;8:98542–52.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nagano O, Saya H. Mechanism and biological significance of CD44 cleavage. Cancer Sci. 2004;95:930–5.

    Article  CAS  PubMed  Google Scholar 

  32. Okamoto I, Kawano Y, Murakami D, Sasayama T, Araki N, Miki T, et al. Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway. J Cell Biol. 2001;155:755–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Senbanjo LT, Chellaiah MA. CD44: a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front Cell Dev Biol. 2017;5:18.

    Article  PubMed  PubMed Central  Google Scholar 

  34. He J, Liu W, Ge X, Wang GC, Desai V, Wang S, et al. Arsenic-induced metabolic shift triggered by the loss of miR-199a-5p through Sp1-dependent DNA methylation. Toxicol Appl Pharm. 2019;378:114606.

    Article  CAS  Google Scholar 

  35. Chen BF, Suen YK, Gu S, Li L, Chan WY. A miR-199a/miR-214 self-regulatory network via PSMD10, TP53 and DNMT1 in testicular germ cell tumor. Sci Rep. 2014;4:6413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin Y, Wang H, Zhu Y, Feng H, Wang G, Wang S. miR-199a-5p is involved in doxorubicin resistance of non-small cell lung cancer (NSCLC) cells. Eur J Pharmacol. 2020;878:173105.

  37. Li Y, Zhang G, Wu B, Yang W, Liu Z. miR-199a-5p represses protective autophagy and overcomes chemoresistance by directly targeting DRAM1 in acute myeloid leukemia. J Oncol. 2019;2019:5613417.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu Y, Lu C, Fan L, Wang J, Li T, Liu Z, et al. MiR-199a-5p targets ZEB1 to inhibit the epithelial-mesenchymal transition of ovarian ectopic endometrial stromal cells via PI3K/Akt/mTOR signal pathway in vitro and in vivo. Reprod Sci. 2020;27:110–8.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang C, Ye B, Wei J, Wang Q, Xu C, Yu G. MiR-199a-5p regulates rat liver regeneration and hepatocyte proliferation by targeting TNF-alpha TNFR1/TRADD/CASPASE8/CASPASE3 signalling pathway. Artif Cells Nanomed Biotechnol. 2019;47:4110–8.

    Article  CAS  PubMed  Google Scholar 

  40. Bhat SA, Ahmad SM, Mumtaz PT, Malik AA, Dar MA, Urwat U, et al. Long non-coding RNAs: mechanism of action and functional utility. Noncoding RNA Res. 2016;1:43–50.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Deng SJ, Chen HY, Ye Z, Deng SC, Zhu S, Zeng Z, et al. Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription. Oncogene. 2018;37:5811–28.

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, He L, Du Y, Zhu P, Huang G, Luo J, et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell. 2015;16:413–25.

    Article  CAS  PubMed  Google Scholar 

  43. Li J, Li S, Chen Z, Wang J, Chen Y, Xu Z, et al. miR-326 reverses chemoresistance in human lung adenocarcinoma cells by targeting specificity protein 1. Tumour Biol. 2016;37:13287–94.

    Article  CAS  PubMed  Google Scholar 

  44. Song Y, Wang R, Li LW, Liu X, Wang YF, Wang QX, et al. Long non-coding RNA HOTAIR mediates the switching of histone H3 lysine 27 acetylation to methylation to promote epithelial-to-mesenchymal transition in gastric cancer. Int J Oncol. 2019;54:77–86.

    CAS  PubMed  Google Scholar 

  45. Li X, Lu H, Fan G, He M, Sun Y, Xu K, et al. A novel interplay between HOTAIR and DNA methylation in osteosarcoma cells indicates a new therapeutic strategy. J Cancer Res Clin Oncol. 2017;143:2189–200.

    Article  CAS  PubMed  Google Scholar 

  46. Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK, et al. The soft agar colony formation assay. J Vis Exp. 2014:e51998. https://doi.org/10.3791/51998.

  47. Borena BM, Meyer E, Chiers K, Martens A, Demeyere K, Broeckx SY, et al. Sphere-forming capacity as an enrichment strategy for epithelial-like stem cells from equine skin. Cell Physiol Biochem. 2014;34:1291–303.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments. This work was supported by the “perfect medical run-up” talent engineering project of The Third Xiangya Hospital of Central South University (Project Number: JY201719).

Author information

Authors and Affiliations

Authors

Contributions

Conception and study design: JC; Data acquisition: SFH, FJT; Data analysis: DSL, ZZC; Manuscript drafting: HLZ; Manuscript revising: SHW. All authors have read and approved the final version of this manuscript to be published.

Corresponding author

Correspondence to Shao-Hua Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

The informed consent was obtained from study participants.

Ethical approval

This study was reviewed and approved by the Ethics Committee of the Third Xiangya Hospital of Central South University. All patients signed the informed consent to participate in this study. All animal protocols were reviewed and approved by the Institutional Animal Care and Use Committee of Central South University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Hou, SF., Tang, FJ. et al. HOTAIR/Sp1/miR-199a critically regulates cancer stemness and malignant progression of cutaneous squamous cell carcinoma. Oncogene 41, 99–111 (2022). https://doi.org/10.1038/s41388-021-02014-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02014-x

This article is cited by

Search

Quick links