Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis

Abstract

BRAF-driven colorectal cancer is among the poorest prognosis subtypes of colon cancer. Previous studies suggest that BRAF-mutant serrated cancers frequently exhibit Microsatellite Instability (MSI) and elevated levels of WNT signaling. The loss of tumor-suppressor Smad4 in oncogenic BRAF-V600E mouse models promotes rapid serrated tumor development and progression, and SMAD4 mutations co-occur in human patient tumors with BRAF-V600E mutations. This study assesses the role of SMAD4 in early-stage serrated tumorigenesis. SMAD4 loss promotes microsatellite stable (MSS) serrated tumors in an oncogenic BRAF-V600E context, providing a model for MSS serrated cancers. Inactivation of Msh2 in these mice accelerated tumor formation, and whole-exome sequencing of both MSS and MSI serrated tumors derived from these mouse models revealed that all serrated tumors developed oncogenic WNT mutations, predominantly in the WNT-effector gene Ctnnb1 (β-catenin). Mouse models mimicking the oncogenic β-catenin mutation show that the combination of three oncogenic mutations (Ctnnb1, Braf, and Smad4) are critical to drive rapid serrated dysplasia formation. Re-analysis of human tumor data reveals BRAF-V600E mutations co-occur with oncogenic mutations in both WNT and SMAD4/TGFβ pathways. These findings identify SMAD4 as a critical factor in early-stage serrated cancers and helps broaden the knowledge of this rare but aggressive subset of colorectal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Loss of SMAD4 promotes microsatellite stable (MSS) tumors.
Fig. 2: MSI accelerates serrated tumorigenesis in Smad4KO BRAFV600E/+ environment.
Fig. 3: MSI increases mutational burden, but there is strong selection for oncogenic WNT activation.
Fig. 4: Smad4KO BRAFV600E/+ tumors exhibit elevated WNT signaling.
Fig. 5: Loss of Smad4 is key step in serrated hyperplasia-to-dysplasia transition.
Fig. 6: Activation of WNT in Smad4KO BRAFV600E/+ mouse model accelerates serrated tumorigenesis.
Fig. 7: Activation of WNT in a Smad4KO BRAFV600E/+ mouse model accelerates serrated tumorigenesis and progression.
Fig. 8: SMAD4/TGFβ has early-stage role in BRAF-V600E serrated tumor progression.

Similar content being viewed by others

References

  1. Rex DK, Ahnen DJ, Baron JA, Batts KP, Burke CA, Burt RW, et al. Serrated lesions of the colorectum: review and recommendations from an expert panel. Am J Gastroenterol. 2012;107:1315–29.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chouhan H, Sammour T, Thomas ML, Moore JW. Prognostic significance of BRAF mutation alone and in combination with microsatellite instability in stage III colon cancer. Asia Pac J Clin Oncol. 2019;15:69–74.

    Article  PubMed  Google Scholar 

  3. Samowitz WS, Sweeney C, Herrick J, Albertsen H, Levin TR, Murtaugh MA, et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005;65:6063–9.

    Article  CAS  PubMed  Google Scholar 

  4. Taieb J, Le Malicot K, Shi Q, Penault-Llorca F, Bouche O, Tabernero J, et al. Prognostic value of BRAF and KRAS mutations in MSI and MSS stage III colon cancer. J Natl Cancer Inst. 2017;109:djw272.

    Article  CAS  Google Scholar 

  5. Yamane L, Scapulatempo-Neto C, Reis RM, Guimaraes DP. Serrated pathway in colorectal carcinogenesis. World J Gastroenterol. 2014;20:2634–40.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rad R, Cadinanos J, Rad L, Varela I, Strong A, Kriegl L, et al. A genetic progression model of Braf(V600E)-induced intestinal tumorigenesis reveals targets for therapeutic intervention. Cancer Cell. 2013;24:15–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Riemer P, Sreekumar A, Reinke S, Rad R, Schafer R, Sers C, et al. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by beta-catenin activity. Oncogene. 2015;34:3164–75.

    Article  CAS  PubMed  Google Scholar 

  8. Sakamoto N, Feng Y, Stolfi C, Kurosu Y, Green M, Lin J, et al. BRAF(V600E) cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis. Elife. 2017;6:e20331.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tong K, Pellon-Cardenas O, Sirihorachai VR, Warder BN, Kothari OA, Perekatt AO, et al. Degree of tissue differentiation dictates susceptibility to BRAF-driven colorectal cancer. Cell Rep. 2017;21:3833–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tao Y, Kang B, Petkovich DA, Bhandari YR, In J, Stein-O’Brien G, et al. Aging-like spontaneous epigenetic silencing facilitates Wnt activation, stemness, and Braf(V600E)-induced tumorigenesis. Cancer Cell. 2019;35:315–28 e316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kane AM, Fennell LJ, Liu C, Borowsky J, McKeone DM, Bond CE, et al. Alterations in signaling pathways that accompany spontaneous transition to malignancy in a mouse model of BRAF mutant microsatellite stable colorectal cancer. Neoplasia. 2020;22:120–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kambara T, Simms LA, Whitehall VL, Spring KJ, Wynter CV, Walsh MD, et al. BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut. 2004;53:1137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tanaka H, Deng G, Matsuzaki K, Kakar S, Kim GE, Miura S, et al. BRAF mutation, CpG island methylator phenotype and microsatellite instability occur more frequently and concordantly in mucinous than non-mucinous colorectal cancer. Int J Cancer. 2006;118:2765–71.

    Article  CAS  PubMed  Google Scholar 

  14. Carragher LA, Snell KR, Giblett SM, Aldridge VS, Patel B, Cook SJ, et al. V600EBraf induces gastrointestinal crypt senescence and promotes tumour progression through enhanced CpG methylation of p16INK4a. EMBO Mol Med. 2010;2:458–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernando WC, Miranda MS, Worthley DL, Togashi K, Watters DJ, Leggett BA, et al. The CIMP phenotype in BRAF mutant serrated polyps from a prospective colonoscopy patient cohort. Gastroenterol Res Pract. 2014;2014:374926.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hinoue T, Weisenberger DJ, Pan F, Campan M, Kim M, Young J, et al. Analysis of the association between CIMP and BRAF in colorectal cancer by DNA methylation profiling. PLoS ONE. 2009;4:e8357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Seppala TT, Bohm JP, Friman M, Lahtinen L, Vayrynen VM, Liipo TK, et al. Combination of microsatellite instability and BRAF mutation status for subtyping colorectal cancer. Br J Cancer. 2015;112:1966–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang Y, Wang D, Jin L, Wu G, Bai Z, Wang J, et al. Prognostic value of the combination of microsatellite instability and BRAF mutation in colorectal cancer. Cancer Manag Res. 2018;10:3911–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  CAS  Google Scholar 

  20. Yan P, Klingbiel D, Saridaki Z, Ceppa P, Curto M, McKee TA, et al. Reduced expression of SMAD4 Is associated with poor survival in colon cancer. Clin Cancer Res. 2016;22:3037–47.

    Article  CAS  PubMed  Google Scholar 

  21. Freeman TJ, Smith JJ, Chen X, Washington MK, Roland JT, Means AL, et al. Smad4-mediated signaling inhibits intestinal neoplasia by inhibiting expression of beta-catenin. Gastroenterology. 2012;142:562–71 e562.

    Article  CAS  PubMed  Google Scholar 

  22. Perekatt AO, Shah PP, Cheung S, Jariwala N, Wu A, Gandhi V, et al. SMAD4 suppresses WNT-driven dedifferentiation and oncogenesis in the differentiated gut epithelium. Cancer Res. 2018;78:4878–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chapnick DA, Warner L, Bernet J, Rao T, Liu X. Partners in crime: the TGFbeta and MAPK pathways in cancer progression. Cell Biosci. 2011;1:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fumagalli A, Drost J, Suijkerbuijk SJ, van Boxtel R, de Ligt J, Offerhaus GJ, et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci USA. 2017;114:E2357–E2364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roper J, Tammela T, Cetinbas NM, Akkad A, Roghanian A, Rickelt S, et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat Biotechnol. 2017;35:569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tian X, Du H, Fu X, Li K, Li A, Zhang Y. Smad4 restoration leads to a suppression of Wnt/beta-catenin signaling activity and migration capacity in human colon carcinoma cells. Biochem Biophys Res Commun. 2009;380:478–83.

    Article  CAS  PubMed  Google Scholar 

  27. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    Article  CAS  PubMed  Google Scholar 

  28. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–32.

    Article  CAS  PubMed  Google Scholar 

  29. Venderbosch S, Nagtegaal ID, Maughan TS, Smith CG, Cheadle JP, Fisher D, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res. 2014;20:5322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Q, Lopez K, Murnane J, Humphrey T, Barcellos-Hoff MH. Misrepair in context: TGFbeta regulation of DNA repair. Front Oncol. 2019;9:799.

    Article  PubMed  PubMed Central  Google Scholar 

  31. el Marjou F, Janssen KP, Chang BH, Li M, Hindie V, Chan L, et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis. 2004;39:186–93.

    Article  CAS  PubMed  Google Scholar 

  32. Dankort D, Filenova E, Collado M, Serrano M, Jones K, McMahon M. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 2007;21:379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang X, Li C, Herrera PL, Deng CX. Generation of Smad4/Dpc4 conditional knockout mice. Genesis. 2002;32:80–81.

    Article  CAS  PubMed  Google Scholar 

  34. Kabbarah O, Mallon MA, Pfeifer JD, Edelmann W, Kucherlapati R, Goodfellow PJ. A panel of repeat markers for detection of microsatellite instability in murine tumors. Mol Carcinog. 2003;38:155–9.

    Article  CAS  PubMed  Google Scholar 

  35. Kucherlapati MH, Lee K, Nguyen AA, Clark AB, Hou H Jr., Rosulek A, et al. An Msh2 conditional knockout mouse for studying intestinal cancer and testing anticancer agents. Gastroenterology. 2010;138:993–1002 e1001.

    Article  PubMed  Google Scholar 

  36. Consortium APG. AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov. 2017;7:818–31.

    Article  Google Scholar 

  37. Panda A, Betigeri A, Subramanian K, Ross JS, Pavlick DC, Ali S, et al. Identifying a Clinically Applicable Mutational Burden Threshold as a Potential Biomarker of Response to Immune Checkpoint Therapy in Solid Tumors. JCO Precis Oncol. 2017;2017:PO.17.00146.

  38. Biswas S, Trobridge P, Romero-Gallo J, Billheimer D, Myeroff LL, Willson JK, et al. Mutational inactivation of TGFBR2 in microsatellite unstable colon cancer arises from the cooperation of genomic instability and the clonal outgrowth of transforming growth factor beta resistant cells. Genes Chromosomes Cancer. 2008;47:95–106.

    Article  CAS  PubMed  Google Scholar 

  39. Bacher JW, Abdel Megid WM, Kent-First MG, Halberg RB. Use of mononucleotide repeat markers for detection of microsatellite instability in mouse tumors. Mol Carcinog. 2005;44:285–92.

    Article  CAS  PubMed  Google Scholar 

  40. Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology. 2010;138:2088–2100.

    Article  CAS  PubMed  Google Scholar 

  41. Taketo MM, Edelmann W. Mouse models of colon cancer. Gastroenterology. 2009;136:780–98.

    Article  CAS  PubMed  Google Scholar 

  42. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017;2017:PO.17.00011.

  43. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Provost E, Yamamoto Y, Lizardi I, Stern J, D’Aquila TG, Gaynor RB, et al. Functional correlates of mutations in beta-catenin exon 3 phosphorylation sites. J Biol Chem. 2003;278:31781–9.

    Article  CAS  PubMed  Google Scholar 

  45. Lannagan TRM, Lee YK, Wang T, Roper J, Bettington ML, Fennell L, et al. Genetic editing of colonic organoids provides a molecularly distinct and orthotopic preclinical model of serrated carcinogenesis. Gut. 2019;68:684–92.

    Article  CAS  PubMed  Google Scholar 

  46. Chen X, Wang C, Jiang Y, Wang Q, Tao Y, Zhang H, et al. Bcl-3 promotes Wnt signaling by maintaining the acetylation of beta-catenin at lysine 49 in colorectal cancer. Signal Transduct Target Ther. 2020;5:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wolf D, Rodova M, Miska EA, Calvet JP, Kouzarides T. Acetylation of beta-catenin by CREB-binding protein (CBP). J Biol Chem. 2002;277:25562–7.

    Article  CAS  PubMed  Google Scholar 

  48. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837–47.

    Article  CAS  PubMed  Google Scholar 

  49. Xia J, Urabe K, Moroi Y, Koga T, Duan H, Li Y, et al. beta-Catenin mutation and its nuclear localization are confirmed to be frequent causes of Wnt signaling pathway activation in pilomatricomas. J Dermatol Sci. 2006;41:67–75.

    Article  CAS  PubMed  Google Scholar 

  50. Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M, et al. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 1999;18:5931–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.

    Article  CAS  PubMed  Google Scholar 

  52. Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO, et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 2007;67:9721–30.

    Article  CAS  PubMed  Google Scholar 

  53. de Sousa EM, Vermeulen L, Richel D, Medema JP. Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res. 2011;17:647–53.

    Article  PubMed  CAS  Google Scholar 

  54. Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol. 2012;4:a008052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Schatoff EM, Leach BI, Dow LE. Wnt signaling and colorectal cancer. Curr Colorectal Cancer Rep. 2017;13:101–10.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gotovac JR, Fujihara KM, Phillips WA, Clemons NJ. TGF-beta signaling and its targeted therapy in gastrointestinal cancers. Discov Med. 2018;26:103–12.

    PubMed  Google Scholar 

  57. Kim SJ, Im YH, Markowitz SD, Bang YJ. Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev. 2000;11:159–68.

    Article  CAS  PubMed  Google Scholar 

  58. Yang G, Yang X. Smad4-mediated TGF-beta signaling in tumorigenesis. Int J Biol Sci. 2010;6:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Meyerhardt JA, Loda M, et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2009;58:90–96.

    Article  PubMed  Google Scholar 

  60. Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50:113–30.

    Article  CAS  PubMed  Google Scholar 

  61. Ang PW, Li WQ, Soong R, Iacopetta B. BRAF mutation is associated with the CpG island methylator phenotype in colorectal cancer from young patients. Cancer Lett. 2009;273:221–4.

    Article  CAS  PubMed  Google Scholar 

  62. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.

    Article  CAS  PubMed  Google Scholar 

  63. Guo TA, Wu YC, Tan C, Jin YT, Sheng WQ, Cai SJ, et al. Clinicopathologic features and prognostic value of KRAS, NRAS and BRAF mutations and DNA mismatch repair status: a single-center retrospective study of 1,834 Chinese patients with Stage I-IV colorectal cancer. Int J Cancer. 2019;145:1625–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sinicrope FA. Evaluating the combination of microsatellite instability and mutation in BRAF as prognostic factors for patients with colorectal cancer. Clin Gastroenterol Hepatol. 2019;17:391–4.

    Article  PubMed  Google Scholar 

  65. Chang L, Chang M, Chang HM, Chang F. Microsatellite instability: a predictive biomarker for cancer immunotherapy. Appl Immunohistochem Mol Morphol. 2018;26:e15–e21.

    Article  CAS  PubMed  Google Scholar 

  66. Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019;16:361–75.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhao P, Li L, Jiang X, Li Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J Hematol Oncol. 2019;12:54.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ando Y, Yamauchi M, Suehiro Y, Yamaoka K, Kosaka Y, Fuji Y, et al. Complete response to pembrolizumab in advanced hepatocellular carcinoma with microsatellite instability. Clin J Gastroenterol. 2020;13:867–72.

    Article  PubMed  Google Scholar 

  69. Andre T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020;383:2207–18.

    Article  CAS  PubMed  Google Scholar 

  70. Barata P, Agarwal N, Nussenzveig R, Gerendash B, Jaeger E, Hatton W, et al. Clinical activity of pembrolizumab in metastatic prostate cancer with microsatellite instability high (MSI-H) detected by circulating tumor DNA. J Immunother Cancer. 2020;8:e001065.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Das S, Allen A, Berlin J. Immunotherapy after immunotherapy: response rescue in a patient with microsatellite instability-high colorectal cancer post-pembrolizumab. Clin Colorectal Cancer. 2020;19:137–40.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Basu S, Haase G, Ben-Ze’ev A. Wnt signaling in cancer stem cells and colon cancer metastasis. F1000Res. 2016;5:699.

  73. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–73.

    Article  CAS  PubMed  Google Scholar 

  74. Panarelli NC, Vaughn CP, Samowitz WS, Yantiss RK. Sporadic microsatellite instability-high colon cancers rarely display immunohistochemical evidence of Wnt signaling activation. Am J Surg Pathol. 2015;39:313–7.

    Article  PubMed  Google Scholar 

  75. Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci. 2007;120:3327–35.

    Article  CAS  PubMed  Google Scholar 

  76. Fodde R. The APC gene in colorectal cancer. Eur J Cancer. 2002;38:867–71.

    Article  CAS  PubMed  Google Scholar 

  77. Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, et al. APC mutations occur early during colorectal tumorigenesis. Nature. 1992;359:235–7.

    Article  CAS  PubMed  Google Scholar 

  78. Eto T, Miyake K, Nosho K, Ohmuraya M, Imamura Y, Arima K, et al. Impact of loss-of-function mutations at the RNF43 locus on colorectal cancer development and progression. J Pathol. 2018;245:445–55.

    Article  CAS  PubMed  Google Scholar 

  79. Giannakis M, Hodis E, Jasmine Mu X, Yamauchi M, Rosenbluh J, Cibulskis K, et al. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat Genet. 2014;46:1264–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yagyu R, Furukawa Y, Lin YM, Shimokawa T, Yamamura T, Nakamura Y. A novel oncoprotein RNF43 functions in an autocrine manner in colorectal cancer. Int J Oncol. 2004;25:1343–8.

    CAS  PubMed  Google Scholar 

  81. Aaltonen LA, Peltomaki P, Leach FS, Sistonen P, Pylkkanen L, Mecklin JP, et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260:812–6.

    Article  CAS  PubMed  Google Scholar 

  82. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–61.

    Article  CAS  PubMed  Google Scholar 

  83. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260:816–9.

    Article  CAS  PubMed  Google Scholar 

  84. Mizuno T, Cloyd JM, Vicente D, Omichi K, Chun YS, Kopetz SE, et al. SMAD4 gene mutation predicts poor prognosis in patients undergoing resection for colorectal liver metastases. Eur J Surg Oncol. 2018;44:684–92.

    Article  PubMed  Google Scholar 

  85. Papageorgis P, Cheng K, Ozturk S, Gong Y, Lambert AW, Abdolmaleky HM, et al. Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res. 2011;71:998–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. O’Rourke KP, Loizou E, Livshits G, Schatoff EM, Baslan T, Manchado E, et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat Biotechnol. 2017;35:577–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Jeng MH, Jordan VC. Growth stimulation and differential regulation of transforming growth factor-beta 1 (TGF beta 1), TGF beta 2, and TGF beta 3 messenger RNA levels by norethindrone in MCF-7 human breast cancer cells. Mol Endocrinol. 1991;5:1120–8.

    Article  CAS  PubMed  Google Scholar 

  88. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995;268:1336–8.

    Article  CAS  PubMed  Google Scholar 

  89. Alberici P, Gaspar C, Franken P, Gorski MM, de Vries I, Scott RJ, et al. Smad4 haploinsufficiency: a matter of dosage. Pathogenetics. 2008;1:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Alberici P, Jagmohan-Changur S, De Pater E, Van Der Valk M, Smits R, Hohenstein P, et al. Smad4 haploinsufficiency in mouse models for intestinal cancer. Oncogene. 2006;25:1841–51.

    Article  CAS  PubMed  Google Scholar 

  91. Sakai E, Nakayama M, Oshima H, Kouyama Y, Niida A, Fujii S, et al. Combined mutation of Apc, Kras, and Tgfbr2 Effectively Drives Metastasis of Intestinal Cancer. Cancer Res. 2018;78:1334–46.

    Article  CAS  PubMed  Google Scholar 

  92. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  93. Robinson JT, Thorvaldsdottir H, Wenger AM, Zehir A, Mesirov JP. Variant Review with the Integrative Genomics Viewer. Cancer Res. 2017;77:e31–e34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.

    Article  CAS  PubMed  Google Scholar 

  96. Xue X, Shah YM. In vitro organoid culture of primary mouse colon tumors. J Vis Exp. 2013;75:e50210.

    Google Scholar 

  97. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinform. 2013;43:11 10 11–11 10 33.

    Google Scholar 

  99. Lange S, Engleitner T, Mueller S, Maresch R, Zwiebel M, Gonzalez-Silva L, et al. Analysis pipelines for cancer genome sequencing in mice. Nat Protoc. 2020;15:266–315.

    Article  CAS  PubMed  Google Scholar 

  100. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Cech M, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016;44:W3–W10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The ensembl variant effect predictor. Genome Biol. 2016;17:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

KT is funded by NCI (1F32CA235829, 5K99CA245123). OAK, KSH, MMB, and JNC were funded by Rutgers Undergraduate Research Fellowships, Douglass Project STEM, and ARESTY Summer Research Fellowships. MPV is funded by NCI (5R01CA190558), NIDDK (1R01DK121915), and supported by the Rutgers Human Genetics Institute of New Jersey and the Cancer Institute of New Jersey (5P30CA072720). SG is funded by NCI (5P30CA072720, 1R01CA243547) and the US Department of Defense. Authors also thank members of Verzi Lab, Rutgers Epigenetic Group, and Rutgers High Performance Computing for constructive input and expertise in Whole Exome Sequencing processing and analysis. Msh2KO mouse model was provided as a gift from Jiehui Deng and the Wong Lab. The authors would like to acknowledge the American Association for Cancer Research and its financial and material support in the development of the AACR Project GENIE registry, as well as members of the consortium for their commitment to data sharing. Interpretations are the responsibility of study authors.

Author information

Authors and Affiliations

Authors

Contributions

KT and MPV responsible for experimental design, execution, and writing of the manuscript. KT, OAK, KSH, MMB, and JNC responsible for benchwork. Animal husbandry performed by KT, OAK, KSH, MMB, JNC, and JJH. Computational analysis performed by KT, KSH, AP, CSC, JX, MLG, and SG. Human data analysis performed by AP and SG. Pathology analysis performed by LZ.

Corresponding author

Correspondence to Michael P. Verzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, K., Kothari, O.A., Haro, K.S. et al. SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis. Oncogene 40, 6034–6048 (2021). https://doi.org/10.1038/s41388-021-01997-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01997-x

Search

Quick links