Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ITLN1 inhibits tumor neovascularization and myeloid derived suppressor cells accumulation in colorectal carcinoma

Abstract

Low levels of ITLN1 have been correlated with obesity-related colorectal carcinogenesis, however, the specific functions and underlying mechanisms remain unclear. Thus, we sought to explore the inhibitory role of ITLN1 in the tumor-permissive microenvironment that exists during the first occurrence and subsequent development of colorectal carcinoma (CRC). Results indicated that ITLN1 was frequently lost in CRC tissues and ITLN1 to be an independent prognostic predictor of CRC. Orthotopic and subcutaneous tumor xenograft approaches were then used to further confirm the protective role of ITLN1 during tumor progression. Increased ITLN1 expression in CRC cells significantly inhibited local pre-existing vessels sprouting, EPC recruitment and the infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) into tumor tissues without affecting the behavior of CRC cells in vitro. Comparatively, ITLN1-derived MDSCs had a lower suppressive effect on T cell proliferation, NOS2 expression, and ROS production. In addition, ITLN1 overexpression markedly suppressed bone marrow (BM)-derived hematopoietic progenitor cells (HPC) differentiation into MDSCs as well as NOS2 activity on MDSCs. Using H-2b+YFP + chimerism through bone marrow transplantation, increased ITLN1 in HCT116 significantly reduced the BM-derived EPCs and MDSCs in vivo mobilization. Mechanistically, results indicated ITLN1 inhibited tumor-derived IL-17D and CXCL2 (MIP2) through the KEAP1/Nrf2/ROS/IL-17D and p65 NF-ĸB/CXCL2 signaling cascades dependent on PI3K/AKT/GSK3ß. This effect was reversed by the PI3K selective inhibitor LY294002. Collectively, ITLN1 synergistically suppressed IL-17D and CXCL2-mediated tumor vascularization, bone marrow derived EPC recruitment, as well as MDSCs generation and trafficking. Thus, ITLN1 potentially serves as a critical prognostic and therapeutic target for CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The expressions and its prognostic significance of ITLN1 in CRC patients.
Fig. 2: Ectopic overexpression of ITLN1 impedes tumorigenesis and tumor growth.
Fig. 3: ITLN1 prevents MDSC accumulation and vascularization.
Fig. 4: ITLN1 inhibits tumor derived IL-17D and CXCL2 production.
Fig. 5: ITLN1 attenuates tumor endothelial activation, MDSCs generation and trafficking.
Fig. 6: ITLN1 inhibits IL-17D and CXCL2 production and is dependent on PI3K/AKT/GSK3ß.
Fig. 7: LY294002 reversed the inhibitory effect of IL-17D-mediated neovascularization and MDSCs mobilization.
Fig. 8: PI3K selective inhibitor LY294002 restores the ITLN1-inhibitory effect on CRC tumor growth.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin. 2018;68:394–424.

    Google Scholar 

  2. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;174:1034–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paul J, Soujon M, Wengner AM, Zitzmann-Kolbe S, Sturz A, Haike K, et al. Simultaneous inhibition of PI3Kdelta and PI3Kalpha induces ABC-DLBCL regression by blocking BCR-dependent and -independent activation of NF-kappaB and AKT. Cancer Cell. 2017;31:64–78.

    Article  CAS  PubMed  Google Scholar 

  4. Hempen PM, Zhang L, Bansal RK, Iacobuzio-Donahue CA, Murphy KM, Maitra A, et al. Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers. Cancer Res. 2003;63:994–9.

    CAS  PubMed  Google Scholar 

  5. Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–.e2105.

    Article  PubMed  CAS  Google Scholar 

  6. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer cell. 2004;6:409–21.

    Article  CAS  PubMed  Google Scholar 

  9. Bronte V, Brandau S, Chen S-H, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 2016;7:12150.

  10. Katoh H, Wang D, Daikoku T, Sun H, Dey SK, Dubois RN. CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell. 2013;24:631–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanigawa N, Amaya H, Matsumura M, Lu C, Kitaoka A, Matsuyama K, et al. Tumor angiogenesis and mode of metastasis in patients with colorectal cancer. Cancer Res. 1997;57:1043–6.

    CAS  PubMed  Google Scholar 

  12. Tanigawa N, Amaya H, Matsumura M, Shimomatsuya T, Horiuchi T, Muraoka R, et al. Extent of tumor vascularization correlates with prognosis and hematogenous metastasis in gastric carcinomas. Cancer Res. 1996;56:2671–6.

    CAS  PubMed  Google Scholar 

  13. Xu H, Zhang Y, Pena MM, Pirisi L, Creek KE. Six1 promotes colorectal cancer growth and metastasis by stimulating angiogenesis and recruiting tumor-associated macrophages. Carcinogenesis. 2017;38:281–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang C, Zhou C, Wu XJ, Yang M, Yang ZH, Xiong HZ, et al. Human CD133-positive hematopoietic progenitor cells initiate growth and metastasis of colorectal cancer cells. Carcinogenesis. 2014;35:2771–7.

    Article  CAS  PubMed  Google Scholar 

  15. Mody K, Baldeo C, Bekaii-Saab T. Antiangiogenic therapy in colorectal cancer. Cancer J (Sudbury, Mass). 2018;24:165–70.

    Article  Google Scholar 

  16. Lee JK, Schnee J, Pang M, Wolfert M, Baum LG, Moremen KW, et al. Human homologs of the Xenopus oocyte cortical granule lectin XL35. Glycobiology. 2001;11:65–73.

    Article  CAS  PubMed  Google Scholar 

  17. Tsuji S, Uehori J, Matsumoto M, Suzuki Y, Matsuhisa A, Toyoshima K, et al. Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J Biol Chem. 2001;276:23456–63.

    Article  CAS  PubMed  Google Scholar 

  18. Mancinelli R, Olivero F, Carpino G, Overi D, Rosa L, Lepanto MS, et al. Role of lactoferrin and its receptors on biliary epithelium. Biometals. 2018;31:369–79.

    Article  CAS  PubMed  Google Scholar 

  19. Shin K, Wakabayashi H, Yamauchi K, Yaeshima T, Iwatsuki K. Recombinant human intelectin binds bovine lactoferrin and its peptides. Biol Pharm Bull. 2008;31:1605–8.

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki YA, Lopez V, Lonnerdal B. Mammalian lactoferrin receptors: structure and function. Cell Mol life Sci: CMLS. 2005;62:2560–75.

    Article  CAS  PubMed  Google Scholar 

  21. Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC, et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab. 2006;290:E1253–1261.

    Article  CAS  PubMed  Google Scholar 

  22. Alissa EM, Al-Salmi MM, Alama NA, Ferns GA. Role of omentin-1 and C-reactive protein in obese subjects with subclinical inflammation. J Clin Transl Endocrinol. 2016;3:7–11.

    PubMed  Google Scholar 

  23. Washimi K, Yokose T, Yamashita M, Kageyama T, Suzuki K, Yoshihara M, et al. Specific expression of human intelectin-1 in malignant pleural mesothelioma and gastrointestinal goblet cells. PloS One. 2012;7:e39889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wali A, Morin PJ, Hough CD, Lonardo F, Seya T, Carbone M, et al. Identification of intelectin overexpression in malignant pleural mesothelioma by serial analysis of gene expression (SAGE). Lung Cancer. 2005;48:19–29.

    Article  PubMed  Google Scholar 

  25. Li D, Mei H, Pu J, Xiang X, Zhao X, Qu H, et al. Intelectin 1 suppresses the growth, invasion and metastasis of neuroblastoma cells through up-regulation of N-myc downstream regulated gene 2. Mol Cancer. 2015;14:47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Au-Yeung CL, Yeung TL, Achreja A, Zhao H, Yip KP, Kwan SY, et al. ITLN1 modulates invasive potential and metabolic reprogramming of ovarian cancer cells in omental microenvironment. Nat Commun. 2020;11:3546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang YY, Zhou LM. Omentin-1, a new adipokine, promotes apoptosis through regulating Sirt1-dependent p53 deacetylation in hepatocellular carcinoma cells. Eur J Pharmacol. 2013;698:137–44.

    Article  CAS  PubMed  Google Scholar 

  28. Li D, Zhao X, Xiao Y, Mei H, Pu J, Xiang X, et al. Intelectin 1 suppresses tumor progression and is associated with improved survival in gastric cancer. Oncotarget. 2015;6:16168–82.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Maeda K, Saigo C, Kito Y, Sakuratani T, Yoshida K, Takeuchi T. Expression of TMEM207 in colorectal cancer: relation between TMEM207 and Intelectin-1. J Cancer. 2016;7:207–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim HJ, Kang UB, Lee H, Jung JH, Lee ST, Yu MH, et al. Profiling of differentially expressed proteins in stage IV colorectal cancers with good and poor outcomes. J Proteom. 2012;75:2983–97.

    Article  CAS  Google Scholar 

  31. Wang D, Sun H, Wei J, Cen B, DuBois RN. CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 2017;77:3655–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011;32:19–25.

    Article  CAS  PubMed  Google Scholar 

  33. Hanrahan V, Currie MJ, Gunningham SP, Morrin HR, Scott PA, Robinson BA, et al. The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. J Pathol. 2003;200:183–94.

    Article  CAS  PubMed  Google Scholar 

  34. Caiado F, Dias S. Endothelial progenitor cells and integrins: adhesive needs. Fibrogenes Tissue Repair. 2012;5:4.

    Article  CAS  Google Scholar 

  35. Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science. 2008;319:195–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7:1194–201.

    Article  CAS  PubMed  Google Scholar 

  37. Patan S. Vasculogenesis and angiogenesis. Cancer Treat Res. 2004;117:3–32.

    Article  CAS  PubMed  Google Scholar 

  38. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Investig. 1999;103:1231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Starnes T, Broxmeyer HE, Robertson MJ, Hromas R. Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis. J Immunol. 2002;169:642–6.

    Article  CAS  PubMed  Google Scholar 

  41. Kaplan RN, Psaila B, Lyden D. Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med. 2007;13:72–81.

    Article  CAS  PubMed  Google Scholar 

  42. Tepper OM, Capla JM, Galiano RD, Ceradini DJ, Callaghan MJ, Kleinman ME, et al. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood. 2005;105:1068–77.

    Article  CAS  PubMed  Google Scholar 

  43. Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013;27:2179–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taki M, Abiko K, Baba T, Hamanishi J, Yamaguchi K, Murakami R, et al. Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation. Nat Commun. 2018;9:1685.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhang H, Ye YL, Li MX, Ye SB, Huang WR, Cai TT, et al. CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene. 2017;36:2095–104.

    Article  CAS  PubMed  Google Scholar 

  46. Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, Hayes JD. Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene. 2013;32:3765–81.

    Article  CAS  PubMed  Google Scholar 

  47. Gonzalez-Donquiles C, Alonso-Molero J, Fernandez-Villa T, Vilorio-Marques L, Molina AJ, Martin V. The NRF2 transcription factor plays a dual role in colorectal cancer: A systematic review. PloS one. 2017;12:e0177549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li CQ, Kim MY, Godoy LC, Thiantanawat A, Trudel LJ, Wogan GN. Nitric oxide activation of Keap1/Nrf2 signaling in human colon carcinoma cells. Proc Natl Acad Sci USA. 2009;106:14547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang Y, Mao Y, Li H, Shen G, Nan G. Knockdown of Nrf2 inhibits angiogenesis by downregulating VEGF expression through PI3K/Akt signaling pathway in cerebral microvascular endothelial cells under hypoxic conditions. Biochem Cell Biol. 2018;96:475–82.

    Article  CAS  PubMed  Google Scholar 

  50. Kim TH, Hur EG, Kang SJ, Kim JA, Thapa D, Lee YM, et al. NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer Res. 2011;71:2260–75.

    Article  CAS  PubMed  Google Scholar 

  51. Saddawi-Konefka R, Seelige R, Gross ET, Levy E, Searles SC, Washington A Jr., et al. Nrf2 induces IL-17D to mediate tumor and virus surveillance. Cell Rep. 2016;16:2348–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schmidt A, Brixius K, Bloch W. Endothelial precursor cell migration during vasculogenesis. Circulation Res. 2007;101:125–36.

    Article  CAS  PubMed  Google Scholar 

  53. Liu Y, Cao X. Characteristics and significance of the pre-metastatic niche. Cancer cell. 2016;30:668–81.

    Article  CAS  PubMed  Google Scholar 

  54. Achyut BR, Shankar A, Iskander AS, Ara R, Angara K, Zeng P, et al. Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks. Cancer Lett. 2015;369:416–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Komiya T, Tanigawa Y, Hirohashi S. Cloning of the novel gene intelectin, which is expressed in intestinal paneth cells in mice. Biochemical Biophys Res Commun. 1998;251:759–62.

    Article  CAS  Google Scholar 

  56. Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J, et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med. 2013;19:1114–23.

    Article  CAS  PubMed  Google Scholar 

  57. Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood. 2003;101:2620–7.

    Article  CAS  PubMed  Google Scholar 

  58. Morandi F, Di Carlo E, Ferrone S, Petretto A, Pistoia V, Airoldi I. IL-27 in human secondary lymphoid organs attracts myeloid dendritic cells and impairs HLA class I-restricted antigen presentation. J Immunol. 2014;192:2634–42.

    Article  CAS  PubMed  Google Scholar 

  59. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008;111:4233–44.

    Article  CAS  PubMed  Google Scholar 

  60. Aleksandrova K, di Giuseppe R, Isermann B, Biemann R, Schulze M, Wittenbecher C, et al. Circulating omentin as a novel biomarker for colorectal cancer risk: data from the EPIC-potsdam cohort study. Cancer Res. 2016;76:3862–71.

    Article  CAS  PubMed  Google Scholar 

  61. Moldogazieva NT, Lutsenko SV Reactive oxygen and nitrogen species-induced protein modifications: implication in carcinogenesis and anticancer therapy. Cancer Res. 2018;78:6040-7.

  62. Xie D, Sham JS, Zeng WF, Lin HL, Che LH, Wu HX, et al. Heterogeneous expression and association of beta-catenin, p16 and c-myc in multistage colorectal tumorigenesis and progression detected by tissue microarray. Int J Cancer. 2003;107:896–902.

    Article  CAS  PubMed  Google Scholar 

  63. Cai MY, Tong ZT, Zheng F, Liao YJ, Wang Y, Rao HL, et al. EZH2 protein: a promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies. Gut. 2011;60:967–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would appreciate Mr. Junhui Huang from Guangzhou Jiamai Biotechnology co., LTD for helping us analyze FCM data. We would also appreciate Dr Hai-yun Wang and Miss. Meng Zheng from Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center for helping us with the revision.

Funding

This work was supported by grants from the National Key R&D Program of China (No. 2017YFC1309000 and No. 2016YFC1302305); the National Natural Science Foundation of China (No.81430055, 81572359, 81602063, 81730072, 81772595, 8197227); the National Natural Science Foundation for Youth (No.81502259); the Natural Science Foundation of Guangdong (No. S1014030001589); the 61th China Postdoctoral Science foundation (2017M612816) and the Guangzhou Science and Technology Plan Projects (No. 201803040019, 201904020044).

Author information

Authors and Affiliations

Authors

Contributions

LC, DX designed the experiments and wrote the manuscript; LC, XHJ, JL, JLD performed the experiments; MYC and JWC collected the surgical sample and performed TMA assay; ZHF ran the TCGA analysis; AMG, FWW helped interpreting the data and revised the manuscript.

Corresponding author

Correspondence to Dan Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Jin, XH., Luo, J. et al. ITLN1 inhibits tumor neovascularization and myeloid derived suppressor cells accumulation in colorectal carcinoma. Oncogene 40, 5925–5937 (2021). https://doi.org/10.1038/s41388-021-01965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01965-5

This article is cited by

Search

Quick links