Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DIF-1 inhibits growth and metastasis of triple-negative breast cancer through AMPK-mediated inhibition of the mTORC1-S6K signaling pathway

Abstract

We have previously reported that the differentiation-inducing factor-1 (DIF-1), a compound identified in Dictyostelium discoideum, suppresses the growth of MCF-7 breast cancer cells by inactivating p70 ribosomal protein S6 kinase (p70S6K). Therefore, we first examined whether the same mechanism operates in other breast cancer cells, especially triple-negative breast cancer (TNBC), the most aggressive and refractory phenotype of breast cancer. We also investigated the mechanism by which DIF-1 suppresses p70S6K by focusing on the AMPK-mTORC1 system. We found that DIF-1 induces phosphorylation of AMPK and Raptor and dephosphorylation of p70S6K in multiple TNBC cell lines. Next, we examined whether AMPK-mediated inhibition of p70S6K leads to the suppression of proliferation and migration/infiltration of TNBC cells. DIF-1 significantly reduced the expression levels of cyclin D1 by suppressing the translation of STAT3 and strongly suppressed the expression levels of Snail, which led to the suppression of growth and motility, respectively. Finally, we investigated whether DIF-1 exerts anticancer effects on TNBC in vivo. Intragastric administration of DIF-1 suppressed tumor growth and spontaneous lung metastasis of 4T1-Luc cells injected into the mammary fat pad of BALB/c mice. DIF-1 is expected to lead to the development of anticancer drugs, including anti-TNBC, by a novel mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effect of DIF-1 on the AMPK-mTORC1-S6K signaling pathway in breast cancer cell lines.
Fig. 2: Involvement of AMPK in the DIF-1-induced inactivation of S6K.
Fig. 3: Role of mTORC1 in the signaling pathway for cell proliferation.
Fig. 4: Involvement of STAT3 in the DIF-1-induced suppression of cyclin D1 expression and cell proliferation.
Fig. 5: Mechanism for the DIF-1-induced suppression of STAT3 expression.
Fig. 6: DIF-1-induced inhibition of Snail-mediated cell motility.
Fig. 7: DIF-1-induced prevention of in vivo tumor growth and spontaneous metastasis of 4T1-Luc cells.
Fig. 8: Current hypothesis on the mechanism of DIF-1’s action.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA, Jemal A. Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin. 2016;66:31–42.

    Article  PubMed  Google Scholar 

  3. Chen L, Linden HM, Anderson BO, Li CI. Trends in 5-year survival rates among breast cancer patients by hormone receptor status and stage. Breast Cancer Res Treat. 2014;147:609–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakamura K, Okada E, Ukawa S, Hirata M, Nagai A, Yamagata Z, et al. Characteristics and prognosis of Japanese female breast cancer patients: the BioBank Japan project. J Epidemiol. 2017;27:S58–64.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Peart O. Metastatic breast cancer. Radio Technol. 2017;88:519m–539m.

    Google Scholar 

  6. Weigelt B, Peterse JL, van’t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602.

    Article  CAS  PubMed  Google Scholar 

  7. Stevens KN, Vachon CM, Couch FJ. Genetic susceptibility to triple-negative breast cancer. Cancer Res. 2013;73:2025–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yao H, He G, Yan S, Chen C, Song L, Rosol TJ, et al. Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget. 2017;8:1913–24.

    Article  PubMed  Google Scholar 

  9. Diaz Casas S, Lancheros García E, Sanchéz Campo A, Sanchez Pedraza R, Roman Vasquez V, Mendoza SD, et al. Clinical behavior of triple negative breast cancer in a cohort of Latin American women. Cureus. 2019;11:e4963.

    PubMed  PubMed Central  Google Scholar 

  10. Howlader NNA, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, et al. SEER cancer statistics review, 1975–2017, April 15, 2020 ed. National Cancer Institute: National Institutes of Health, 2020.

  11. Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:61.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Morris HR, Taylor GW, Masento MS, Jermyn KA, Kay RR. Chemical structure of the morphogen differentiation inducing factor from Dictyostelium discoideum. Nature. 1987;328:811–4.

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi-Yanaga F, Yoshihara T, Jingushi K, Igawa K, Tomooka K, Watanabe Y, et al. DIF-1 inhibits tumor growth in vivo reducing phosphorylation of GSK-3 beta and expressions of cyclin D1 and TCF7L2 in cancer model mice. Biochemical Pharmacol. 2014;89:340–8.

    Article  CAS  Google Scholar 

  14. Tetsuo F, Arioka M, Miura K, Kai M, Kubo M, Igawa K, et al. Differentiation-inducing factor-1 suppresses cyclin D1-induced cell proliferation of MCF-7 breast cancer cells by inhibiting S6K-mediated signal transducer and activator of transcription 3 synthesis. Cancer Sci. 2019;110:3761–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kubokura N, Takahashi-Yanaga F, Arioka M, Yoshihara T, Igawa K, Tomooka K, et al. Differentiation-inducing factor-3 inhibits intestinal tumor growth in vitro and in vivo. J Pharmacol Sci. 2015;127:446–55.

    Article  CAS  PubMed  Google Scholar 

  16. Arioka M, Takahashi-Yanaga F, Kubo M, Igawa K, Tomooka K, Sasaguri T. Anti-tumor effects of differentiation-inducing factor-1 in malignant melanoma: GSK-3-mediated inhibition of cell proliferation and GSK-3-independent suppression of cell migration and invasion. Biochemical Pharmacol. 2017;138:31–48.

    Article  CAS  Google Scholar 

  17. Mori J, Takahashi-Yanaga F, Miwa Y, Watanabe Y, Hirata M, Morimoto S, et al. Differentiation-inducing factor-1 induces cyclin D1 degradation through the phosphorylation of Thr(286) in squamous cell carcinoma. Exp Cell Res. 2005;310:426–33.

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi-Yanaga F, Mori J, Matsuzaki E, Watanabe Y, Hirata M, Miwa Y, et al. Involvement of GSK-3beta and DYRK1B in differentiation-inducing factor-3-induced phosphorylation of cyclin D1 in HeLa cells. J Biol Chem. 2006;281:38489–97.

    Article  CAS  PubMed  Google Scholar 

  19. Jingushi K, Nakamura T, Takahashi-Yanaga F, Matsuzaki E, Watanabe Y, Yoshihara T, et al. Differentiation-inducing factor-1 suppresses the expression of c-Myc in the human cancer cell lines. J Pharmacol Sci. 2013;121:103–9.

    Article  CAS  PubMed  Google Scholar 

  20. Shimizu K, Murata T, Tagawa T, Takahashi K, Ishikawa R, Abe Y, et al. Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1) is a pharmacological target of differentiation-inducing factor-1, an antitumor agent isolated from Dictyostelium. Cancer Res. 2004;64:2568–71.

    Article  CAS  PubMed  Google Scholar 

  21. Matsuda T, Takahashi-Yanaga F, Yoshihara T, Maenaka K, Watanabe Y, Miwa Y, et al. Dictyostelium differentiation-inducing factor-1 binds to mitochondrial malate dehydrogenase and inhibits its activity. J Pharmacol Sci. 2010;112:320–6.

    Article  CAS  PubMed  Google Scholar 

  22. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Handa N, Takagi T, Saijo S, Kishishita S, Takaya D, Toyama M, et al. Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit kinase domain. Acta Crystallogr D Biol Crystallogr. 2011;67:480–7.

    Article  CAS  PubMed  Google Scholar 

  24. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331:456–61.

    Article  CAS  PubMed  Google Scholar 

  25. Munday MR, Campbell DG, Carling D, Hardie DG. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur J Biochem. 1988;175:331–8.

    Article  CAS  PubMed  Google Scholar 

  26. Liu QS, Xu CX, Kirubakaran S, Zhang X, Hur W, Liu Y, et al. Characterization of Torin2, an ATP-Competitive Inhibitor of mTOR, ATM, and ATR. Cancer Res. 2013;73:2574–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010;70:288–98.

    Article  CAS  PubMed  Google Scholar 

  28. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang A, Wang Q, Han Z, Hu W, Xi L, Gao Q, et al. Reduced expression of Snail decreases breast cancer cell motility by downregulating the expression and inhibiting the activity of RhoA GTPase. Oncol Lett. 2013;6:339–46.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene. 2002;21:3241–6.

    Article  CAS  PubMed  Google Scholar 

  31. Pon YL, Zhou HY, Cheung AN, Ngan HY, Wong AS. p70 S6 kinase promotes epithelial to mesenchymal transition through snail induction in ovarian cancer cells. Cancer Res. 2008;68:6524–32.

    Article  CAS  PubMed  Google Scholar 

  32. Ma JH, Qin L, Li X. Role of STAT3 signaling pathway in breast cancer. Cell Commun Signal. 2020;18:33.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Son H, Moon A. Epithelial-mesenchymal transition and cell invasion. Toxicol Res. 2010;26:245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Campbell K, Casanova J. A common framework for EMT and collective cell migration. Development. 2016;143:4291–300.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Shi J, Chai K, Ying X, Zhou BP. The role of snail in EMT and tumorigenesis. Curr Cancer Drug Targets. 2013;13:963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29:212–26.

    Article  CAS  PubMed  Google Scholar 

  37. Hiraga T, Williams PJ, Ueda A, Tamura D, Yoneda T. Zoledronic acid inhibits visceral metastases in the 4T1/luc mouse breast cancer model. Clin Cancer Res. 2004;10:4559–67.

    Article  CAS  PubMed  Google Scholar 

  38. Jingushi K, Takahashi-Yanaga F, Yoshihara T, Shiraishi F, Watanabe Y, Hirata M, et al. DIF-1 inhibits the Wnt/beta-catenin signaling pathway by inhibiting TCF7L2 expression in colon cancer cell lines. Biochemical Pharmacol. 2012;83:47–56.

    Article  CAS  Google Scholar 

  39. Schaffer BE, Levin RS, Hertz NT, Maures TJ, Schoof ML, Hollstein PE, et al. Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction. Cell Metab. 2015;22:907–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sugden C, Urbaniak MD, Araki T, Williams JG. The dictyostelium prestalk inducer differentiation-inducing factor-1 (DIF-1) triggers unexpectedly complex global phosphorylation changes. Mol Biol Cell. 2015;26:805–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Parajuli P, Pisarev V, Sublet J, Steffel A, Varney M, Singh R, et al. Immunization with wild-type p53 gene sequences coadministered with Flt3 ligand induces an antigen-specific type 1 T-cell response. Cancer Res. 2001;61:8227–34.

    CAS  PubMed  Google Scholar 

  42. Hui L, Zheng Y, Yan Y, Bargonetti J, Foster DA. Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene. 2006;25:7305–10.

    Article  CAS  PubMed  Google Scholar 

  43. Agarwal S, Bell CM, Taylor SM, Moran RG. p53 deletion or hotspot mutations enhance mTORC1 activity by altering lysosomal dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14:66–77.

    Article  CAS  PubMed  Google Scholar 

  44. Agarwal S, Bell CM, Rothbart SB, Moran RG. AMP-activated protein kinase (AMPK) control of mTORC1 is p53- and TSC2-independent in pemetrexed-treated carcinoma cells. J Biol Chem. 2015;290:27473–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15:2–8.

    Article  CAS  PubMed  Google Scholar 

  46. Figueiredo VC, Markworth JF, Cameron-Smith D. Considerations on mTOR regulation at serine 2448: implications for muscle metabolism studies. Cell Mol Life Sci. 2017;74:2537–45.

    Article  CAS  PubMed  Google Scholar 

  47. Rosner M, Siegel N, Valli A, Fuchs C, Hengstschläger M. mTOR phosphorylated at S2448 binds to raptor and rictor. Amino Acids. 2010;38:223–8.

    Article  CAS  PubMed  Google Scholar 

  48. Burgstaller S, Rosner M, Lindengrün C, Hanneder M, Siegel N, Valli A, et al. Tuberin, p27 and mTOR in different cells. Amino Acids. 2009;36:297–302.

    Article  CAS  PubMed  Google Scholar 

  49. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.

    Article  CAS  PubMed  Google Scholar 

  50. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448:439–44.

    Article  CAS  PubMed  Google Scholar 

  51. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486:405–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ban HS, Xu X, Jang K, Kim I, Kim BK, Lee K, et al. A novel malate dehydrogenase 2 inhibitor suppresses hypoxia-inducible factor-1 by regulating mitochondrial respiration. PLoS ONE. 2016;11:e0162568.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sabbatinelli J, Prattichizzo F, Olivieri F, Procopio AD, Rippo MR, Giuliani A. Where metabolism meets senescence: focus on endothelial cells. Front Physiol. 2019;10:1523.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527:472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tao K, Fang M, Alroy J, Sahagian GG. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer. 2008;8:228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Iriki T, Ohnishi K, Fujiwara Y, Horlad H, Saito Y, Pan C, et al. The cell-cell interaction between tumor-associated macrophages and small cell lung cancer cells is involved in tumor progression via STAT3 activation. Lung Cancer. 2017;106:22–32.

    Article  PubMed  Google Scholar 

  57. Jhaveri K, Teplinsky E, Silvera D, Valeta-Magara A, Arju R, Giashuddin S, et al. Hyperactivated mTOR and JAK2/STAT3 pathways: molecular drivers and potential therapeutic targets of inflammatory and invasive ductal breast cancers after neoadjuvant chemotherapy. Clin Breast Cancer. 2016;16:113–22. e111

    Article  CAS  PubMed  Google Scholar 

  58. Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol. 2009;27:3297–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Faria J, Negalha G, Azevedo A, Martel F. Metformin and breast cancer: molecular targets. J Mammary Gland Biol Neoplasia. 2019;24:111–23.

    Article  CAS  PubMed  Google Scholar 

  60. Yunokawa M, Koizumi F, Kitamura Y, Katanasaka Y, Okamoto N, Kodaira M, et al. Efficacy of everolimus, a novel mTOR inhibitor, against basal-like triple-negative breast cancer cells. Cancer Sci. 2012;103:1665–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee JS, Yost SE, Blanchard S, Schmolze D, Yin HH, Pillai R, et al. Phase I clinical trial of the combination of eribulin and everolimus in patients with metastatic triple-negative breast cancer. Breast Cancer Res. 2019;21:119.

    Article  PubMed  PubMed Central  Google Scholar 

  62. He J, McLaughlin RP, van der Noord V, Foekens JA, Martens JWM, van Westen G, et al. Multi-targeted kinase inhibition alleviates mTOR inhibitor resistance in triple-negative breast cancer. Breast Cancer Res Treat. 2019;178:263–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol. 2019;12:71.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the technical support provided by the Research Support Center at the Graduate School of Medical Sciences of Kyushu University. This study was supported by JSPS KAKENHI Grant Numbers JP17K15581, JP20K07292, JP20K22709, by Fukuoka Foundation for Sound Health Cancer Research Fund to MA, by Kaibara Morikazu Medical Science Promotion Foundation to MA, and by Society for Women’s Health Science Research to FTY.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masaki Arioka or Toshiyuki Sasaguri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seto-Tetsuo, F., Arioka, M., Miura, K. et al. DIF-1 inhibits growth and metastasis of triple-negative breast cancer through AMPK-mediated inhibition of the mTORC1-S6K signaling pathway. Oncogene 40, 5579–5589 (2021). https://doi.org/10.1038/s41388-021-01958-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01958-4

This article is cited by

Search

Quick links