Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IDH2 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in multiple myeloma

Abstract

Epigenetic alterations have been previously shown to contribute to multiple myeloma (MM) pathogenesis via DNA methylations and histone modifications. RNA methylation, a novel epigenetic modification, is required for cancer cell survival, and targeting this pathway has been proposed as a new therapeutic strategy. The extent to the N6-methyladenosine (m6A)-regulatory pathway functions in MM remains unknown. Here, we show that an imbalance of RNA methylation may underlies the tumorigenesis of MM. Mechanistically, isocitrate dehydrogenase 2 (IDH2) is highly expressed in CD138+ cells from MM and its levels appear a progressive increase in the progression of plasma cell dyscrasias. Downregulation of IDH2 increases global m6A RNA levels and reduces myeloma cell growth in vitro, decreases the burden of disease and prolongs overall survival in vivo. IDH2 regulates RNA methylation by activating the RNA demethylase FTO, which is an α-KG-dependent dioxygenase. Furthermore, IDH2-mediated FTO activation decreases the m6A level on WNT7B transcripts, then increases WNT7B expression and thus activated Wnt signaling pathway. Moreover, survival analysis indicates that the elevated expression of IDH2 predicts a poor prognosis. Higher expression of FTO is related to higher International Staging System (ISS) stage and higher Revised-ISS (R-ISS) stage of MM. Collectively, our studies reveal that IDH2 regulates global m6A RNA modification in MM via targeting RNA demethylases FTO. The imbalance of m6A methylation activates the Wnt signaling pathway by enhancing the WNT7B expression, and thus promoting tumorigenesis and progression of MM. IDH2 might be used as a therapeutic target and a possible prognostic factor for MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IDH2 is essential for MM initiation and development.
Fig. 2: Knockdown of IDH2 expression in LP-1 cells resulted in decreased proliferation, increased apoptosis, and cell cycle arrest.
Fig. 3: The effect of IDH2 on the histone methylation and 5-mC DNA methylation in myeloma cells.
Fig. 4: The effect of IDH2 on m6A methylation in myeloma cells.
Fig. 5: The IDH2/FTO/m6A axis regulates WNT7B expression.
Fig. 6: m6A reader protein YTHDF2 is essential for WNT7B m6A modification.

Similar content being viewed by others

References

  1. Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer. 2002;2:175–87.

    Article  CAS  PubMed  Google Scholar 

  2. van de Donk NWCJ, Janmaat ML, Mutis T, Lammerts van Bueren JJ, Ahmadi T, Sasser AK, et al. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol Rev. 2016;270:95–112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Levin A, Hari P, Dhakal B. Novel biomarkers in multiple myeloma. Transl Res. 2018;201:49–59.

    Article  CAS  PubMed  Google Scholar 

  4. Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168:657–69.

    Article  PubMed Central  CAS  Google Scholar 

  5. Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 2018;9:216–37.

    Article  CAS  PubMed  Google Scholar 

  6. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim S-H, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kats LM, Reschke M, Taulli R, Pozdnyakova O, Burgess K, Bhargava P, et al. Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell. 2014;14:329–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pansuriya TC, van Eijk R, d’Adamo P, van Ruler MA, Kuijjer ML, Oosting J, et al. Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet. 2011;43:1256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25:91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bergaggio E, Riganti C, Garaffo G, Vitale N, Mereu E, Bandini C, et al. IDH2 inhibition enhances proteasome inhibitor responsiveness in hematological malignancies. Blood. 2019;133:156–67.

    Article  CAS  PubMed  Google Scholar 

  11. Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 2019;74:640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Paris J, Morgan M, Campos J, Spencer GJ, Shmakova A, Ivanova I, et al. Targeting the RNA m(6)A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell. 2019;25:137–48. e136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Z, Qian P, Shao W, Shi H, He XC, Gogol M, et al. Suppression of m(6)A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res. 2018;28:904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, et al. The RNA m(6)A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol Cell. 2017;67:1059–67. e1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vu LP, Cheng Y, Kharas MG. The biology of m(6)A RNA methylation in normal and malignant hematopoiesis. Cancer Discov. 2019;9:25–33.

    Article  CAS  PubMed  Google Scholar 

  16. Lopez-Corral L, Corchete LA, Sarasquete ME, Mateos MV, Garcia-Sanz R, Ferminan E, et al. Transcriptome analysis reveals molecular profiles associated with evolving steps of monoclonal gammopathies. Haematologica. 2014;99:1365–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Agnelli L, Mosca L, Fabris S, Lionetti M, Andronache A, Kwee I, et al. A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect. Genes Chromosomes Cancer. 2009;48:603–14.

    Article  CAS  PubMed  Google Scholar 

  18. Gutierrez NC, Ocio EM, de Las Rivas J, Maiso P, Delgado M, Ferminan E, et al. Gene expression profiling of B lymphocytes and plasma cells from Waldenstrom’s macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals. Leukemia. 2007;21:541–9.

    Article  CAS  PubMed  Google Scholar 

  19. Chng WJ, Kumar S, Vanwier S, Ahmann G, Price-Troska T, Henderson K, et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res. 2007;67:2982–9.

    Article  CAS  PubMed  Google Scholar 

  20. Mulligan G, Mitsiades C, Bryant B, Zhan F, Chng WJ, Roels S, et al. Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood. 2007;109:3177–88.

    Article  CAS  PubMed  Google Scholar 

  21. Herr CQ, Hausinger RP. Amazing diversity in biochemical roles of Fe(II)/2-oxoglutarate oxygenases. Trends Biochem Sci. 2018;43:517–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hausinger RP. FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol. 2004;39:21–68.

    Article  CAS  PubMed  Google Scholar 

  23. Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol L, et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol. 2015;33:2863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Danziger SA, McConnell M, Gockley J, Young MH, Rosenthal A, Schmitz F, et al. Bone marrow microenvironments that contribute to patient outcomes in newly diagnosed multiple myeloma: a cohort study of patients in the Total Therapy clinical trials. PLoS Med. 2020;17:e1003323.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39:W316–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spaan I, Raymakers RA, van de Stolpe A, Peperzak V. Wnt signaling in multiple myeloma: a central player in disease with therapeutic potential. J Hematol Oncol. 2018;11:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. van Andel H, Kocemba KA, Spaargaren M, Pals ST. Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options. Leukemia. 2019;33:1063–1075.

  28. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    Article  PubMed  CAS  Google Scholar 

  29. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell. 2017;31:127–41.

    Article  PubMed  CAS  Google Scholar 

  30. Mattioli M, Agnelli L, Fabris S, Baldini L, Morabito F, Bicciato S, et al. Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene. 2005;24:2461–73.

    Article  CAS  PubMed  Google Scholar 

  31. Yang H, Ye D, Guan KL, Xiong Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res. 2012;18:5562–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 2011;12:463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, Berisha F, et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol. 2011;224:334–43.

    Article  CAS  PubMed  Google Scholar 

  34. Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell. 2018;172:90–105. e123.

    Article  CAS  PubMed  Google Scholar 

  35. Repana D, Nulsen J, Dressler L, Bortolomeazzi M, Venkata SK, Tourna A, et al. The Network of Cancer Genes (NCG): a comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens. Genome Biol. 2019;20:1.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Alzrigat M, Parraga AA, Jernberg-Wiklund H. Epigenetics in multiple myeloma: from mechanisms to therapy. Semin Cancer Biol. 2018;51:101–15.

    Article  CAS  PubMed  Google Scholar 

  37. Bianchi G, Munshi NC. Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood. 2015;125:3049–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Szalat R, Munshi NC. Genomic heterogeneity in multiple myeloma. Curr Opin Genet Dev. 2015;30:56–65.

    Article  CAS  PubMed  Google Scholar 

  39. Dimopoulos K, Gimsing P, Gronbaek K. The role of epigenetics in the biology of multiple myeloma. Blood Cancer J. 2014;4:e207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou J, Wan J, Shu XE, Mao Y, Liu XM, Yuan X, et al. N(6)-methyladenosine guides mRNA alternative translation during integrated stress response. Mol Cell. 2018;69:636–47. e637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 2014;24:1403–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3’-end processing. Nucleic Acids Res. 2017;45:11356–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research leading to these results has received funding from Natural Science Foundation of Jiangsu Province China (BK20201408), Clinical Key Diagnosis and Treatment Technologies in Suzhou City (LCZX201805), Jiangsu Social Development Project-New Clinical Diagnosis and Treatment Technology (BE2019664), Scientific and Technological Projects of People’s Livelihood in Suzhou City (SS201856), The Fifth Phase of “333 High-level Talents Training Project” in Jiangsu Province (BRA2018138) and National Clinical Research Center for Hematologic Diseases.

Author information

Authors and Affiliations

Authors

Contributions

WZ and BL designed the research, SS and GF performed research, SS and QL wrote the paper, XZ, XX, and ZW performed research and modified the paper, CQ analyzed data.

Corresponding authors

Correspondence to Bingzong Li or Wenzhuo Zhuang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Fan, G., Li, Q. et al. IDH2 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in multiple myeloma. Oncogene 40, 5393–5402 (2021). https://doi.org/10.1038/s41388-021-01939-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01939-7

This article is cited by

Search

Quick links