Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antifungal agent Terbinafine restrains tumor growth in preclinical models of hepatocellular carcinoma via AMPK-mTOR axis

Abstract

The prognosis of hepatocellular carcinoma (HCC) remains unsatisfactory due to limited effective treatment options. In this work, we investigated the therapeutic efficacy of Terbinafine for HCC and the underlying mechanism. The influence of Terbinafine on cell growth, 3D spheroid formation, clonogenic survival, and protein synthesis was investigated in human HCC cell lines. Co-immunoprecipitation, immunofluorescence, and other techniques were employed to explore how Terbinafine exerts its anticancer effect. Subcutaneous tumorigenicity assay, orthotopic and patient-derived xenograft (PDX) HCC models were used to evaluate the anticancer effect of Terbinafine monotherapy and the combinatorial treatment with Terbinafine and sorafenib against HCC. The anticancer activity of Terbinafine was Squalene epoxidase (SQLE)-independent. Instead, Terbinafine robustly suppressed the proliferation of HCC cells by inhibiting mTORC1 signaling via activation of AMPK. Terbinafine alone or in combination with sorafenib delayed tumor progression and markedly prolonged the survival of tumor-bearing mice. The synergy between Terbinafine and sorafenib was due to concomitant inhibition of mTORC1 and induction of severe persistent DNA double-strand breaks (DSBs), which led to the delayed proliferation and accelerated cell death. Terbinafine showed promising anticancer efficacy in preclinical models of HCC and may serve as a potential therapeutic strategy for HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Terbinafine suppresses mTORC1 signaling.
Fig. 2: AMPK mediates mTORC1 inhibition by Terbinafine.
Fig. 3: Synthetic lethality with a combination of Terbinafine and sorafenib in HCC cells.
Fig. 4: Terbinafine synergizes with sorafenib in suppressing mTORC1 signaling.
Fig. 5: Combinatorial treatment with Terbinafine and sorafenib elicits severe DSBs and induces cell death.
Fig. 6: Combined Terbinafine and sorafenib treatment in vivo impairs tumor growth and prolongs survival.
Fig. 7: Terbinafine plus sorafenib combinatorial treatment causes regression of patient-derived xenograft (PDX) in vivo.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018;391:1301–14.

    Article  PubMed  Google Scholar 

  3. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–27.

    Article  CAS  PubMed  Google Scholar 

  4. Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin Cancer Res. 2014;20:2072–9.

    Article  CAS  PubMed  Google Scholar 

  5. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  CAS  PubMed  Google Scholar 

  6. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.

    Article  CAS  PubMed  Google Scholar 

  7. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 2018;391:1163–73.

    Article  CAS  PubMed  Google Scholar 

  8. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007;12:9–22.

    Article  CAS  PubMed  Google Scholar 

  9. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991;253:905–9.

    Article  CAS  PubMed  Google Scholar 

  10. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012;149:274–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 2008;135:1972–83. 83.e1-11

    Article  CAS  PubMed  Google Scholar 

  12. Matter MS, Decaens T, Andersen JB, Thorgeirsson SS. Targeting the mTOR pathway in hepatocellular carcinoma: current state and future trends. J Hepatol. 2014;60:855–65.

    Article  CAS  PubMed  Google Scholar 

  13. Sahin F, Kannangai R, Adegbola O, Wang J, Su G, Torbenson M. mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin Cancer Res. 2004;10:8421–5.

    Article  CAS  PubMed  Google Scholar 

  14. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13:1886–918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ferrín G, Guerrero M, Amado V, Rodríguez-Perálvarez M, De la Mata M. Activation of mTOR signaling pathway in hepatocellular carcinoma. Int J Mol Sci. 2020;21:1 (abstract).

  16. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41–58.

    Article  CAS  PubMed  Google Scholar 

  17. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–83.

    Article  CAS  PubMed  Google Scholar 

  18. Revankar SG, Nailor MD, Sobel JD. Use of terbinafine in rare and refractory mycoses. Fut Microbiol. 2008;3:9–17.

    Article  CAS  Google Scholar 

  19. Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell 2007;130:601–10.

    Article  CAS  PubMed  Google Scholar 

  20. Humphreys F. Terbinafine. J Drug Evaluation 2004;2:133–55.

    Article  CAS  Google Scholar 

  21. Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 2020;21:183–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004;4:335–48.

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods 2009;6:275–7.

    Article  CAS  PubMed  Google Scholar 

  24. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008;320:1496–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008;30:214–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003;115:577–90.

    Article  CAS  PubMed  Google Scholar 

  27. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 2004;101:3329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. 2004;24:200–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer 2015;15:397–408.

    Article  CAS  PubMed  Google Scholar 

  30. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001;411:366–74.

    Article  CAS  PubMed  Google Scholar 

  31. Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2015;12:681–700.

    Article  CAS  PubMed  Google Scholar 

  32. Semela D, Piguet AC, Kolev M, Schmitter K, Hlushchuk R, Djonov V, et al. Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. J Hepatol. 2007;46:840–8.

    Article  CAS  PubMed  Google Scholar 

  33. Piguet AC, Saar B, Hlushchuk R, St-Pierre MV, McSheehy PM, Radojevic V, et al. Everolimus augments the effects of sorafenib in a syngeneic orthotopic model of hepatocellular carcinoma. Mol Cancer Ther. 2011;10:1007–17.

    Article  CAS  PubMed  Google Scholar 

  34. Menon S, Yecies JL, Zhang HH, Howell JJ, Nicholatos J, Harputlugil E, et al. Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci Signal. 2012;5:ra24.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Thomas HE, Mercer CA, Carnevalli LS, Park J, Andersen JB, Conner EA, et al. mTOR inhibitors synergize on regression, reversal of gene expression, and autophagy in hepatocellular carcinoma. Sci Transl Med. 2012;4:139ra84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Rizell M, Andersson M, Cahlin C, Hafström L, Olausson M, Lindnér P. Effects of the mTOR inhibitor sirolimus in patients with hepatocellular and cholangiocellular cancer. Int J Clin Oncol. 2008;13:66–70.

    Article  CAS  PubMed  Google Scholar 

  37. Schöniger-Hekele M, Müller C. Pilot study: rapamycin in advanced hepatocellular carcinoma. Aliment Pharm Ther. 2010;32:763–8.

    Article  CAS  Google Scholar 

  38. Decaens T, Luciani A, Itti E, Hulin A, Roudot-Thoraval F, Laurent A, et al. Phase II study of sirolimus in treatment-naive patients with advanced hepatocellular carcinoma. Dig Liver Dis. 2012;44:610–6.

    Article  CAS  PubMed  Google Scholar 

  39. Iavarone M, Cabibbo G, Piscaglia F, Zavaglia C, Grieco A, Villa E, et al. Field-practice study of sorafenib therapy for hepatocellular carcinoma: a prospective multicenter study in Italy. Hepatology 2011;54:2055–63.

    Article  CAS  PubMed  Google Scholar 

  40. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005;307:1098–101.

    Article  CAS  PubMed  Google Scholar 

  41. Tuominen VJ, Ruotoistenmäki S, Viitanen A, Jumppanen M, Isola J. ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 2010;12:R56.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Guan DX, Shi J, Zhang Y, Zhao JS, Long LY, Chen TW, et al. Sorafenib enriches epithelial cell adhesion molecule-positive tumor initiating cells and exacerbates a subtype of hepatocellular carcinoma through TSC2-AKT cascade. Hepatology 2015;62:1791–803.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Yu Li of our institute (SINH, CAS) for the gift of an anti-puromycin monoclonal antibody (#EQ0001, Kefafast). We also appreciate the New World Group for their Charitable Foundation to establish the Institute for Nutritional Sciences, SIBS, CAS-New World Joint laboratory, which has given full support to this study. In addition, the Author Gratefully Acknowledges the Support of the SA-SIBS Scholarship Program.

Funding

This work was supported by the National Key R&D Program of China (2018YFC1603002 and 2018YFC1604404), National Natural Science Foundation of China (81730083 and 82030084) to Dong Xie; and National Natural Science Foundation of China (31771538 and 81972757), Youth Innovation Promotion Association of Chinese Academy of Sciences fund (2017324) to Jing-Jing Li.

Author information

Authors and Affiliations

Authors

Contributions

E.Z. contributed to conceptualization, investigation, formal analysis, validation, project administration, and writing—original draft; X.Z. contributed to the investigation, formal analysis, validation, and project administration; K.W., F.Z., T.C., N.M., Q.N., Y.W., Q.Z., H.C., J.X., B.Z., S.X., X.D., X.W., and Z.L. contributed to the formal analysis, methodology, and resources; S.C., D.X., J.L. contributed to the funding acquisition, supervision, and writing—review & editing. All authors read and approved the final paper.

Corresponding authors

Correspondence to Shuqun Cheng, Dong Xie or Jing-Jing Li.

Ethics declarations

Ethics approval and consent to participate

Mice were manipulated according to the guidelines for the care and use of laboratory animals and were approved by the Institutional Biomedical Research Ethics Committee of the Shanghai Institutes for Biological Sciences (#ER-SIBS-251902). For Patient-Derived Xenograft (PDX) model studies, written informed consent was obtained from each patient.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, EB., Zhang, X., Wang, K. et al. Antifungal agent Terbinafine restrains tumor growth in preclinical models of hepatocellular carcinoma via AMPK-mTOR axis. Oncogene 40, 5302–5313 (2021). https://doi.org/10.1038/s41388-021-01934-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01934-y

This article is cited by

Search

Quick links