Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

EMT-mediated regulation of CXCL1/5 for resistance to anti-EGFR therapy in colorectal cancer

Abstract

The emergence of RAS/RAF mutant clone is the main feature of EGFR inhibitor resistance in KRAS wild-type colon cancer. However, its molecular mechanism is thought to be multifactorial, mainly due to cellular heterogeneity. In order to better understand the resistance mechanism in a single clone level, we successfully isolated nine cells with cetuximab-resistant (CR) clonality from in vitro system. All CR cells harbored either KRAS or BRAF mutations. Characteristically, these cells showed a higher EMT (Epithelial to mesenchymal transition) signature, showing increased EMT markers such as SNAI2. Moreover, the expression level of CXCL1/5, a secreted protein, was significantly higher in CR cells compared to the parental cells. In these CR cells, CXCL1/5 expression was coordinately regulated by SNAI2/NFKB and transactivated EGFR through CXCR/MMPI/EGF axis via autocrine singling. We also observed that combined cetuximab/MEK inhibitor not only showed growth inhibition but also reduced the secreted amounts of CXCL1/5. We further found that serum CXCL1/5 level was positively correlated with the presence of RAS/RAF mutation in colon cancer patients during cetuximab therapy, suggesting its role as a biomarker. These data indicated that the application of serum CXCL1/5 could be a potential serologic biomarker for predicting resistance to EGFR therapy in colorectal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cetuximab-resistant cell lines have heterogeneity.
Fig. 2: Acquired resistance to cetuximab induces EMT through SNAI2 transcriptional regulation.
Fig. 3: CXCL1 and CXCL5 secreted from KRASMT/BRAFMT are regulated by RELA/SNAI2 as a co-effector.
Fig. 4: CXCL1 and CXCL5 induce resistance to cetuximab by transactivating EGFR via the CXCR2/MMP1/HB-EGF axis.
Fig. 5: Co-treatment with BRAF/MEK inhibitor decrease the secreted amounts of CXCL1/5 in CR cells.
Fig. 6: Secreted CXCL1 and CXCL5 can be detected in human blood samples.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017;67:177–93.

    Article  PubMed  Google Scholar 

  2. Mishra J, Drummond J, Quazi SH, Karanki SS, Shaw JJ, Chen B, et al. Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit Rev Oncol Hematol. 2013;86:232–50.

    Article  PubMed  Google Scholar 

  3. Cremolini C, Schirripa M, Antoniotti C, Moretto R, Salvatore L, Masi G, et al. First-line chemotherapy for mCRC-a review and evidence-based algorithm. Nat Rev Clin Oncol. 2015;12:607–19.

    Article  CAS  PubMed  Google Scholar 

  4. Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358:1160–74.

    Article  CAS  PubMed  Google Scholar 

  5. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94.

    Article  CAS  PubMed  Google Scholar 

  6. Misale S, Di Nicolantonio F, Sartore-Bianchi A, Siena S, Bardelli A. Resistance to anti-EGFR therapy in colorectal cancer: from heterogeneity to convergent evolution. Cancer Discov. 2014;4:1269–80.

    Article  CAS  PubMed  Google Scholar 

  7. Hsu HC, Thiam TK, Lu YJ, Yeh CY, Tsai WS, You JF, et al. Mutations of KRAS/NRAS/BRAF predict cetuximab resistance in metastatic colorectal cancer patients. Oncotarget. 2016;7:22257–70.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Misale S, Arena S, Lamba S, Siravegna G, Lallo A, Hobor S, et al. Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer. Sci Transl Med. 2014;6:224ra226.

    Article  Google Scholar 

  9. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486:532–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Brummelen EMJ, de Boer A, Beijnen JH, Schellens JHM. BRAF mutations as predictive biomarker for response to anti-EGFR monoclonal antibodies. Oncologist. 2017;22:864–72.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhao B, Wang L, Qiu H, Zhang M, Sun L, Peng P, et al. Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget. 2017;8:3980–4000.

    Article  PubMed  Google Scholar 

  12. Arena S, Bellosillo B, Siravegna G, Martinez A, Canadas I, Lazzari L, et al. Emergence of multiple EGFR extracellular mutations during cetuximab treatment in colorectal cancer. Clin Cancer Res. 2015;21:2157–66.

    Article  CAS  PubMed  Google Scholar 

  13. Xu JM, Wang Y, Wang YL, Wang Y, Liu T, Ni M, et al. PIK3CA mutations contribute to acquired cetuximab resistance in patients with metastatic colorectal cancer. Clin Cancer Res. 2017;23:4602–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 2004;4:11–22.

    Article  CAS  PubMed  Google Scholar 

  15. Ramesh G, MacLean AG, Philipp MT. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm. 2013;2013:480739.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843:2563–82.

    Article  CAS  PubMed  Google Scholar 

  17. Bolitho C, Hahn MA, Baxter RC, Marsh DJ. The chemokine CXCL1 induces proliferation in epithelial ovarian cancer cells by transactivation of the epidermal growth factor receptor. Endocr Relat Cancer. 2010;17:929–40.

    Article  CAS  PubMed  Google Scholar 

  18. Grepin R, Guyot M, Giuliano S, Boncompagni M, Ambrosetti D, Chamorey E, et al. The CXCL7/CXCR1/2 axis is a key driver in the growth of clear cell renal cell carcinoma. Cancer Res. 2014;74:873–83.

    Article  CAS  PubMed  Google Scholar 

  19. Kuo PL, Shen KH, Hung SH, Hsu YL. CXCL1/GROalpha increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-kappaB/HDAC1 epigenetic regulation. Carcinogenesis. 2012;33:2477–87.

    Article  CAS  PubMed  Google Scholar 

  20. Spaks A. Role of CXC group chemokines in lung cancer development and progression. J Thorac Dis. 2017;9:S164–S171.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sparmann A, Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell. 2004;6:447–58.

    Article  CAS  PubMed  Google Scholar 

  22. Yuan M, Zhu H, Xu J, Zheng Y, Cao X, Liu Q. Tumor-derived CXCL1 promotes lung cancer growth via recruitment of tumor-associated neutrophils. J Immunol Res. 2016;2016:6530410.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kogan-Sakin I, Cohen M, Paland N, Madar S, Solomon H, Molchadsky A, et al. Prostate stromal cells produce CXCL-1, CXCL-2, CXCL-3 and IL-8 in response to epithelia-secreted IL-1. Carcinogenesis. 2009;30:698–705.

    Article  CAS  PubMed  Google Scholar 

  24. Mangahas CR, dela Cruz GV, Friedman-Jimenez G, Jamal S. Endothelin-1 induces CXCL1 and CXCL8 secretion in human melanoma cells. J Investig Dermatol. 2005;125:307–11.

    Article  CAS  PubMed  Google Scholar 

  25. Jones VS, Huang RY, Chen LP, Chen ZS, Fu L, Huang RP. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim Biophys Acta. 2016;1865:255–65.

    CAS  PubMed  Google Scholar 

  26. Nolen BM, Marks JR, Ta’san S, Rand A, Luong TM, Wang Y, et al. Serum biomarker profiles and response to neoadjuvant chemotherapy for locally advanced breast cancer. Breast Cancer Res. 2008;10:R45.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pommier AJ, Shaw R, Spencer SK, Morgan SR, Hoff PM, Robertson JD, et al. Serum protein profiling reveals baseline and pharmacodynamic biomarker signatures associated with clinical outcome in mCRC patients treated with chemotherapy +/− cediranib. Br J Cancer. 2014;111:1590–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shaw VE, Lane B, Jenkinson C, Cox T, Greenhalf W, Halloran CM, et al. Serum cytokine biomarker panels for discriminating pancreatic cancer from benign pancreatic disease. Mol Cancer. 2014;13:114.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yako YY, Kruger D, Smith M, Brand M. Cytokines as biomarkers of pancreatic ductal adenocarcinoma: a systematic review. PLoS ONE. 2016;11:e0154016.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yamazaki N, Kiyohara Y, Uhara H, Iizuka H, Uehara J, Otsuka F, et al. Cytokine biomarkers to predict antitumor responses to nivolumab suggested in a phase 2 study for advanced melanoma. Cancer Sci. 2017;108:1022–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11:753–62.

    Article  PubMed  Google Scholar 

  32. Chen C, Xu ZQ, Zong YP, Ou BC, Shen XH, Feng H, et al. CXCL5 induces tumor angiogenesis via enhancing the expression of FOXD1 mediated by the AKT/NF-kappaB pathway in colorectal cancer. Cell Death Dis. 2019;10:178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu B, Fan H, Lv X, Chen S, Shao Z. Prognostic significance of CXCL5 expression in cancer patients: a meta-analysis. Cancer Cell Int. 2018;18:68.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hoesel B, Schmid JA. The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park MH, Hong JT. Roles of NF-kappaB in cancer and inflammatory diseases and their therapeutic approaches. Cells. 2016;5:15.

  36. Xia Y, Shen S, Verma IM. NF-kappaB, an active player in human cancers. Cancer Immunol Res. 2014;2:823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bommarito A, Richiusa P, Carissimi E, Pizzolanti G, Rodolico V, Zito G, et al. BRAFV600E mutation, TIMP-1 upregulation, and NF-kappaB activation: closing the loop on the papillary thyroid cancer trilogy. Endocr Relat Cancer. 2011;18:669–85.

    Article  CAS  PubMed  Google Scholar 

  38. Burke SJ, Lu D, Sparer TE, Masi T, Goff MR, Karlstad MD, et al. NF-kappaB and STAT1 control CXCL1 and CXCL2 gene transcription. Am J Physiol Endocrinol Metab. 2014;306:E131–149.

    Article  CAS  PubMed  Google Scholar 

  39. Ling J, Kang Y, Zhao R, Xia Q, Lee DF, Chang Z, et al. KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21:105–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mizumoto Y, Kyo S, Kiyono T, Takakura M, Nakamura M, Maida Y, et al. Activation of NF-kappaB is a novel target of KRAS-induced endometrial carcinogenesis. Clin Cancer Res. 2011;17:1341–50.

    Article  CAS  PubMed  Google Scholar 

  41. Grisanti LA, Guo S, Tilley DG. Cardiac GPCR-Mediated EGFR Transactivation: Impact and Therapeutic Implications. J Cardiovasc Pharmacol. 2017;70:3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Z. Transactivation of epidermal growth factor receptor by G protein-coupled receptors: recent progress, challenges and future research. Int J Mol Sci. 2016;17:95.

  43. Milne GW, Nicklaus MC, Driscoll JS, Wang S, Zaharevitz D. National cancer institute drug information system 3D database. J Chem Inf Comput Sci. 1994;34:1219–24.

    Article  CAS  PubMed  Google Scholar 

  44. Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, et al. Metabolic heterogeneity in human lung tumors. Cell. 2016;164:681–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saunders NA, Simpson F, Thompson EW, Hill MM, Endo-Munoz L, Leggatt G, et al. Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med. 2012;4:675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Choi YH, Kim JK. Dissecting cellular heterogeneity using single-cell RNA sequencing. Mol Cells. 2019;42:189–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Goldman SL, MacKay M, Afshinnekoo E, Melnick AM, Wu S, Mason CE. The impact of heterogeneity on single-cell sequencing. Front Genet. 2019;10:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lawson DA, Kessenbrock K, Davis RT, Pervolarakis N, Werb Z. Tumour heterogeneity and metastasis at single-cell resolution. Nat Cell Biol. 2018;20:1349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Girbl T, Lenn T, Perez L, Rolas L, Barkaway A, Thiriot A, et al. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis. Immunity. 2018;49:1062–76.e1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol. 2015;7:a016303.

  51. Susek KH, Karvouni M, Alici E, Lundqvist A. The role of CXC chemokine receptors 1-4 on immune cells in the tumor microenvironment. Front Immunol. 2018;9:2159.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Park YL, Kim HP, Cho YW, Min DW, Cheon SK, Lim YJ, et al. Activation of WNT/beta-catenin signaling results in resistance to a dual PI3K/mTOR inhibitor in colorectal cancer cells harboring PIK3CA mutations. Int J Cancer. 2019;144:389–401.

    Article  CAS  PubMed  Google Scholar 

  53. Yun J, Song SH, Kang JY, Park J, Kim HP, Han SW, et al. Reduced cohesin destabilizes high-level gene amplification by disrupting pre-replication complex bindings in human cancers with chromosomal instability. Nucleic Acids Res. 2016;44:558–72.

    Article  CAS  PubMed  Google Scholar 

  54. Song SH, Hou C, Dean A. A positive role for NLI/Ldb1 in long-range beta-globin locus control region function. Mol Cell. 2007;28:810–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Taylor SC, Laperriere G, Germain H. Droplet digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Sci Rep. 2017;7:2409.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Nikki March, Ph.D., from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript. The authors are grateful to all members of our group for their helpful advice. This research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare (HI14C1277, HI13C2096), by the Ministry of Science, ICT & Future Planning (2016M3A9B6026918, 2018R1C1B6005264), and by the National Research Foundation of Korea (2017M3C9A5029978), and by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science & ICT (NRF-2017M3A9A7050610).

Author information

Authors and Affiliations

Authors

Contributions

Y-LP, H-PK, and T-YK conceived the project; Y-LP, D-WM established xenograft models Y-LP performed single-cell experiments; C-YO and JKK performed computational analysis; Y-LP designed and performed in vitro and in vivo experiments; Y-LP, H-PK, YJL, S-HS, S-WH, and T-YK interpreted data; Y-LP wrote the manuscript. All authors contributed edits and approved the final manuscript.

Corresponding authors

Correspondence to Ye-Lim Park or Tae-You Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, YL., Kim, HP., Ock, CY. et al. EMT-mediated regulation of CXCL1/5 for resistance to anti-EGFR therapy in colorectal cancer. Oncogene 41, 2026–2038 (2022). https://doi.org/10.1038/s41388-021-01920-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01920-4

Search

Quick links