Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vaccinia-related kinase 2 drives pancreatic cancer progression by protecting Plk1 from Chfr-mediated degradation

Abstract

As a key cell cycle regulator, polo-like kinase 1 (Plk1) has been recognized as a crucial factor involved in the progression of pancreatic cancer (PC). However, its regulatory mechanism is poorly understood. Here, we present evidence that Plk1 is a novel substrate of vaccinia-related kinase 2 (VRK2), a serine-threonine kinase that is highly expressed and predicts poor prognosis in PC. VRK2 phosphorylates Plk1 at threonine 210 and protects it from ubiquitin-dependent proteasomal degradation. We showed that mechanistically complement factor H-related protein (CFHR), as a major E3 ligase, promotes Plk1 degradation by ubiquitinating it at lysine 209. Phosphorylation of Plk1 at threonine 210 by VRK2 interferes with the interaction of Chfr with Plk1 and antagonizes Plk1 ubiquitination, thereby stabilizing the Plk1 protein. Taken together, our data reveal a mechanism of Plk1 overexpression in PC and provide evidence for targeting VRK2 as a potential therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High VRK2 expression correlates with the poor prognosis of PC.
Fig. 2: VRK2 accelerates PC cells proliferation in vitro and in vivo.
Fig. 3: VRK2 regulates Plk1 protein expression and promotes PC cells proliferation.
Fig. 4: VRK2 stabilizes the expression of Plk1 protein by inhibiting proteasome-mediated Plk1 degradation.
Fig. 5: VRK2-mediated Plk1 Thr210 phosphorylation is necessary for the stabilization of Plk1.
Fig. 6: VRK2-mediated Plk1 phosphorylation disrupts Plk1 interaction with Chfr and protects Plk1 from degradation.
Fig. 7: Clinical PC tissues validated positive regulation of VRK2 on Plk1.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  Google Scholar 

  2. Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol. 2016;22:9694–705.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yabar CS, Winter JM. Pancreatic cancer: a review. Gastroenterol Clin North Am. 2016;45:429–45.

    Article  PubMed  Google Scholar 

  4. McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 2018;24:4846–61.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lin QJ, Yang F, Jin C, Fu DL. Current status and progress of pancreatic cancer in China. World J Gastroenterol. 2015;21:7988–8003.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Grimont A, Pinho AV, Cowley MJ, Augereau C, Mawson A, Giry-Laterrière M, et al. SOX9 regulates ERBB signalling in pancreatic cancer development. Gut. 2015;64:1790–9.

    Article  CAS  PubMed  Google Scholar 

  7. Berry LD, Golsteyn RM, Lane HA, Mundt KE, Arnaud L, Nigg EA. The family of polo-like kinases. Progr Cell Cycle Res. 1996;2:107–14.

    Article  Google Scholar 

  8. Archambault V, Glover DM. Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol. 2009;10:265–75.

    Article  CAS  PubMed  Google Scholar 

  9. Lens SM, Voest EE, Medema RH. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer. 2010;10:825–41.

    Article  CAS  PubMed  Google Scholar 

  10. Liu Z, Sun Q, Wang XPLK1. a potential target for cancer therapy. Transl Oncol. 2017;10:22–32.

    Article  PubMed  Google Scholar 

  11. de Carcer G, Venkateswaran SV, Salgueiro L, El Bakkali A, Somogyi K, Rowald K, et al. Plk1 overexpression induces chromosomal instability and suppresses tumor development. Nat Commun. 2018;9:3012.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shin CH, Lee H, Kim HR, Choi KH, Joung JG, Kim HH. Regulation of PLK1 through competition between hnRNPK, miR-149-3p and miR-193b-5p. Cell Death Differ. 2017;24:1861–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xin X, Lin F, Wang Q, Yin L, Mahato RI. ROS-responsive polymeric micelles for triggered simultaneous delivery of PLK1 inhibitor/miR-34a and effective synergistic therapy in pancreatic cancer. ACS Appl Mater Interfaces. 2019;11:14647–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li J, Wang R, Schweickert PG, Karki A, Yang Y, Kong Y, et al. Plk1 inhibition enhances the efficacy of gemcitabine in human pancreatic cancer. Cell Cycle. 2016;15:711–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Song B, Liu XS, Rice SJ, Kuang S, Elzey BD, Konieczny SF, et al. Plk1 phosphorylation of Orc2 and Hbo1 contributes to gemcitabine resistance in pancreatic cancer. Mol Cancer Therap. 2012;12:58–68.

    Article  Google Scholar 

  16. Nezu J, Oku A, Jones MH, Shimane M. Identification of two novel human putative serine/threonine kinases, VRK1 and VRK2, with structural similarity to vaccinia virus B1R kinase. Genomics. 1997;45:327–31.

    Article  CAS  PubMed  Google Scholar 

  17. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    Article  CAS  PubMed  Google Scholar 

  18. Nichols RJ, Traktman P. Characterization of three paralogous members of the Mammalian vaccinia related kinase family. J Biol Chem. 2004;279:7934–46.

    Article  CAS  PubMed  Google Scholar 

  19. Klerkx EP, Lazo PA, Askjaer P. Emerging biological functions of the vaccinia-related kinase (VRK) family. 2009.

  20. Tesli M, Wirgenes KV, Hughes T, Bettella F, Athanasiu L, Hoseth ES, et al. VRK2 gene expression in schizophrenia, bipolar disorder and healthy controls. Br J Psychiatry. 2016;209:114–20.

    Article  PubMed  Google Scholar 

  21. Sanz-García M, López-Sánchez I, Lazo PA. Proteomics identification of nuclear Ran GTPase as an inhibitor of human VRK1 and VRK2 (vaccinia-related kinase) activities. Mol Cell Proteom. 2008;7:2199–214.

    Article  Google Scholar 

  22. Vázquez-Cedeira M, Lazo PA. Human VRK2 (vaccinia-related kinase 2) modulates tumor cell invasion by hyperactivation of NFAT1 and expression of cyclooxygenase-2. J Biol Chem. 2012;287:42739–50.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim S, Lee D, Lee J, Song H, Kim H-J, Kim K-T. Vaccinia-related kinase 2 controls the stability of the eukaryotic chaperonin TRiC/CCT by inhibiting the deubiquitinating enzyme USP25. Mol Cell Biol. 2015;35:1754–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fernández IF, Blanco S, Lozano J, Lazo PA. VRK2 inhibits mitogen-activated protein kinase signaling and inversely correlates with ErbB2 in human breast cancer. Mol Cell Biol. 2010;30:4687–97.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Blanco S, Klimcakova L, Vega FM, Lazo PA. The subcellular localization of vaccinia‐related kinase‐2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. FEBS J. 2006;273:2487–504.

    Article  CAS  PubMed  Google Scholar 

  26. Kim S, Park D-Y, Lee D, Kim W, Jeong Y-H, Lee J, et al. Vaccinia-related kinase 2 mediates accumulation of polyglutamine aggregates via negative regulation of the chaperonin TRiC. Mol Cell Biol. 2014;34:643–52.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shin S-B, Jang H-R, Xu R, Won J-Y, Yim H. Active PLK1-driven metastasis is amplified by TGF-β signaling that forms a positive feedback loop in non-small cell lung cancer. Oncogene. 2020;39:767–85.

    Article  CAS  PubMed  Google Scholar 

  28. Kang D, Chen J, Wong J, Fang G. The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition. J Cell Biol. 2002;156:249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen B, Zhu A, Tian L, Xin Y, Liu X, Peng Y, et al. miR23a suppresses pancreatic cancer cell progression by inhibiting PLK1 expression. Mol Med Rep. 2018;18:105–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mahajan UM, Teller S, Sendler M, Palankar R, van den Brandt C, Schwaiger T, et al. Tumour-specific delivery of siRNA-coupled superparamagnetic iron oxide nanoparticles, targeted against PLK1, stops progression of pancreatic cancer. Gut. 2016;65:1838–49.

    Article  CAS  PubMed  Google Scholar 

  31. Monsalve DM, Merced T, Fernandez IF, Blanco S, Vazquez-Cedeira M, Lazo PA. Human VRK2 modulates apoptosis by interaction with Bcl-xL and regulation of BAX gene expression. Cell Death Dis. 2013;4:e513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiao D, Yue M, Su H, Ren P, Jiang J, Li F, et al. Polo-like kinase-1 regulates myc stabilization and activates a feedforward circuit promoting tumor cell survival. Mol Cell. 2016;64:493–506.

    Article  CAS  PubMed  Google Scholar 

  33. Mai J, Zhong ZY, Guo GF, Chen XX, Xiang YQ, Li X, et al. Polo-Like Kinase 1 phosphorylates and stabilizes KLF4 to promote tumorigenesis in nasopharyngeal carcinoma. Theranostics. 2019;9:3541–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wen D, Wu J, Wang L, Fu Z. SUMOylation promotes nuclear import and stabilization of polo-like kinase 1 to support its mitotic function. Cell Rep. 2017;21:2147–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eckerdt F, Yuan J, Saxena K, Martin B, Kappel S, Lindenau C, et al. Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells. J Biol Chem. 2005;280:36575–83.

    Article  CAS  PubMed  Google Scholar 

  36. Jeong YH, Choi JH, Lee D, Kim S, Kim KT. Vaccinia-related kinase 2 modulates role of dysbindin by regulating protein stability. J Neurochem. 2018;147:609–25.

    Article  CAS  PubMed  Google Scholar 

  37. Blanco S, Klimcakova L, Vega FM, Lazo PA. The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. FEBS J. 2006;273:2487–504.

    Article  CAS  PubMed  Google Scholar 

  38. Seki A, Coppinger JA, Jang CY, Yates JR, Fang G. Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science. 2008;320:1655–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qian YW, Erikson E, Maller JL. Mitotic effects of a constitutively active mutant of the Xenopus polo-like kinase Plx1. Mol Cell Biol. 1999;19:8625–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang D, Chen J, Wong J, Fang G. The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition. J Cell Biol. 2002;156:249–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim JS, Park YY, Park SY, Cho H, Kang D, Cho H. The auto-ubiquitylation of E3 ubiquitin-protein ligase Chfr at G2 phase is required for accumulation of polo-like kinase 1 and mitotic entry in mammalian cells. J Biol Chem. 2011;286:30615–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific research and cultivation project of talents in the First Affiliated Hospital of Nanchang University (YFYPY202015).

Author information

Authors and Affiliations

Authors

Contributions

SSC and BX conceived, designed and supervised the execution of the entire project. HQZ, QL and YLZ initiated the project, designed experiments, and carried out major western blot, bioinformatics, cellular and animal studies. HP and JZ helped to establish IHC staining and pathological analyses. LYG and ZJ were responsible for mass spectrometry analysis. ZXZ analyzed and interpreted the data. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Bin Xu or Sisi Chen.

Ethics declarations

COMPETING INTERESTS

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Li, Q., Zhao, Y. et al. Vaccinia-related kinase 2 drives pancreatic cancer progression by protecting Plk1 from Chfr-mediated degradation. Oncogene 40, 4663–4674 (2021). https://doi.org/10.1038/s41388-021-01893-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01893-4

This article is cited by

Search

Quick links