Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asporin represses gastric cancer apoptosis via activating LEF1-mediated gene transcription independent of β-catenin

Abstract

Asporin (ASPN) presents in the tumor microenvironment and exhibits a cancer-promoting effect as a stroma protein. Even though ASPN has already been observed inside cancer cells, the functions of intracellular ASPN and its underlying mechanisms remain unknown. Here we reported that ASPN was upregulated in different stages of gastric cancer (GC), and associated with a poor prognosis. Moreover, we found that ASPN markedly inhibited GC cell apoptosis and promoted cell growth in vitro and in vivo. Further mechanism investigations revealed that ASPN directly binding to lymphoid enhancer-binding factor 1 (LEF1) and promoted LEF1-mediated gene transcription independent of β-catenin, the classic co-factor in the Wnt/LEF1 pathway. We also demonstrated that ASPN selectively facilitated LEF1 binding to and activating the promoters of PTGS2, IL6, and WISP1 to promote their transcription. The suppression of cell apoptosis by ASPN overexpression could be attenuated by LEF1 knockdown or 100 µM aspirin (PTGS2 inhibitor), and siASPN mediated apoptosis could be rescued by LEF1 ectopic expression or adding recombinant IL6. Therefore, we concluded that ASPN repressed GC cell apoptosis via activating LEF1-mediated gene transcription independent of β-catenin, which could serve as a potential prognostic biomarker in GC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ASPN was upregulated inside GC cells and correlated with poor prognosis in different GC cohorts.
Fig. 2: ASPN promoted GC cell proliferation, migration and invasion.
Fig. 3: ASPN inhibited GC cell apoptosis and promoted tumorigenicity.
Fig. 4: ASPN interacted with LEF1.
Fig. 5: ASPN selectively regulated the expression of LEF1 downstream molecules in GC.
Fig. 6: Nuclear-specific ASPN indeed promote cell viability and inhibit cell apoptosis.
Fig. 7: ASPN inhibited apoptosis by activating the transcriptional activity of LEF1.

Similar content being viewed by others

Data availability

All the data needed to evaluate the conclusions made in the paper are presented in the paper. Additional data related to this paper may be requested from the authors.

References

  1. The Cancer Genome Atlas Research Network. Cancer Genome Atlas Research Network; Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Article  CAS  Google Scholar 

  2. Song Y, Wang Y, Tong C, Xi H, Zhao X, Wang Y, et al. A unified model of the hierarchical and stochastic theories of gastric cancer. Brit J Cancer. 2017;116:973.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lordick F, Allum W, Carneiro F, Mitry E, Tabernero J, Tan P, et al. Unmet needs and challenges in gastric cancer: the way forward. Cancer Treat Rev. 2014;40:692–700.

    Article  PubMed  Google Scholar 

  4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  5. Badgwell B, Blum M, Estrella J, Ajani J. Personalised therapy for localised gastric and gastro-oesophageal adenocarcinoma. Lancet Oncol. 2016;17:1628–9.

    Article  PubMed  Google Scholar 

  6. Van CE, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388:2654–64.

    Article  CAS  Google Scholar 

  7. Lorenzo P, Aspberg A, Onnerfjord P, Bayliss MT, Neame PJ, Heinegard D. Identification and characterization of asporin. a novel member of the leucine-rich repeat protein family closely related to decorin and biglycan. J Biol Chem. 2001;276:12201–11.

    Article  CAS  PubMed  Google Scholar 

  8. Ikegawa S. Expression, regulation and function of asporin, a susceptibility gene in common bone and joint diseases. Curr Med Chem. 2008;15:724–8.

    Article  CAS  PubMed  Google Scholar 

  9. Clark HF, Gurney AL, Abaya E, Baker K, Baldwin D, Brush J, et al. The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res. 2003;13:2265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kizawa H, Kou I, Iida A, Sudo A, Miyamoto Y, Fukuda A, et al. An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet. 2005;37:138–44.

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez-Lopez J, Pombo-Suarez M, Liz M, Gomez-Reino JJ, Gonzalez A. Lack of association of a variable number of aspartic acid residues in the asporin gene with osteoarthritis susceptibility: case-control studies in Spanish Caucasians. Arthritis Res Ther. 2006;8:R55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Simkova D, Kharaishvili G, Slabakova E, Murrayc PG, Bouchala J. Glycoprotein asporin as a novel player in tumour microenvironment and cancer progression. Biomed Pap Med Fac Univ Palacky Olomouc. 2016;160:467–73.

    Article  Google Scholar 

  13. Castellana B, Escuin D, Peiró G, Garcia-Valdecasas B, Vázquez T, Pons C. ASPN and GJB2 are implicated in the mechanisms of invasion of ductal breast carcinomas. J Cancer. 2012;3:1783.

    Article  CAS  Google Scholar 

  14. Maris P, Blomme A, Palacios AP, Costanza B, Bellahcène A, Bianchi E, et al. Asporin is a fibroblast-derived TGF-β1 inhibitor and a tumor suppressor associated with good prognosis in breast cancer. PLoS Med. 2015;12:e1001871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hurley PJ, Sundi D, Shinder B, Simons BW, Hughes RM, Hughes RM, et al. Germline variants in asporin vary by race, modulate the tumor microenvironment, and are differentially associated with metastatic prostate cancer. Clin Cancer Res. 2016;22:448–58.

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Wu H, Wang L, Zhang H, Lu J, Liang Z, et al. Asporin promotes pancreatic cancer cell invasion and migration by regulating the epithelial-to-mesenchymal transition (EMT) through both autocrine and paracrine mechanisms. Cancer Lett. 2017;398:24–36.

    Article  CAS  PubMed  Google Scholar 

  17. Huo W, Jing XQ, Cheng X, He YG, Hu L, Wu HX, et al. Asporin enhances colorectal cancer metastasis through activating the EGFR/src/cortactin signaling pathway. Oncotarget. 2016;7:73402–13.

    Article  Google Scholar 

  18. Hrckulak D, Kolar M, Strnad H, Korinek V. TCF/LEF transcription factors: an update from the internet resources. Cancers. 2016;8:70.

    Article  PubMed Central  CAS  Google Scholar 

  19. Longo KA, Kennell JA, Ochocinska MJ, Ross SE, Wright WS, MacDougald OA. Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors. J Biol Chem. 2002;277:38239–44.

    Article  CAS  PubMed  Google Scholar 

  20. Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and β-catenin signalling: diseases and therapies. Nat Rev Genet. 2004;5:691–704.

    Article  CAS  PubMed  Google Scholar 

  21. Janna W, Katja R, Elham BH, Constanze L, Gilles R, Vivien F, et al. Loss of the nuclear Wnt pathway effector TCF7L2 promotes migration and invasion of human colorectal cancer cells. Oncogene. 2020;39:3893–909.

    Article  CAS  Google Scholar 

  22. Rexhep U, Christian B, Anja K, Claudia M, Daniela M, Michal JO, et al. Temporal activation of WNT/β-catenin signaling is sufficient to inhibit SOX10 expression and block melanoma growth. Oncogene. 2020;39:4132–54.

    Article  CAS  Google Scholar 

  23. Wang L, Dehm SM, Hillman DW, Sicotte H, Tan W, Gormley M, et al. A prospective genome-wide study of prostate cancer metastases reveals association of wnt pathway activation and increased cell cycle proliferation with primary resistance to abiraterone acetate–prednisone. Ann Oncol. 2017;29:352–60.

    Article  PubMed Central  Google Scholar 

  24. Stewart DJ. Wnt signaling pathway in non–small cell lung cancer. J Natl Cancer I. 2014;106:djt356.

    Article  CAS  Google Scholar 

  25. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015;523:231–5.

    Article  CAS  PubMed  Google Scholar 

  26. Nusse R. Wnt signaling in disease and in development. Cell Res. 2005;15:28–32.

    Article  CAS  PubMed  Google Scholar 

  27. Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Disco. 2014;13:513–32.

    Article  CAS  Google Scholar 

  28. Park JH, Lee JM, Lee EJ, Hwang WB, Kim DJ. Indole-3-Carbinol Promotes Goblet-Cell Differentiation Regulating Wnt and Notch Signaling Pathways AhR-Dependently. Mol Cells. 2018;41:290–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989.

    Article  CAS  PubMed  Google Scholar 

  30. Acebron SP, Niehrs C. β-Catenin-Independent Roles of Wnt/LRP6 Signaling. Trends Cell Biol. 2016;26:956–67.

    Article  CAS  PubMed  Google Scholar 

  31. D’Errico M, de Rinaldis E, Blasi MF, Viti V, Falchett M, Calcagnile A, et al. Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. Eur J Cancer. 2009;45:461–9.

  32. Cui J, Chen Y, Chou WC, Sun L, Chen L, Suo J, et al. An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res. 2010;39:1197–207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Uhlen M, Bandrowski A, Carr S, Edwards A, Ellenberg J, Lundberg E, et al. A proposal for validation of antibodies. Nat Methods. 2016;13:823.

    Article  CAS  PubMed  Google Scholar 

  34. Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J, et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet. 2009;5:e1000676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21:449–56.

    Article  CAS  PubMed  Google Scholar 

  36. Kim HK, Choi IJ, Kim CG, Kim HS, Oshima A, Michalowski A, et al. A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients. PloS ONE. 2011;6:e16694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pérez-Garijo A, Steller H. Spreading the word: non-autonomous effects of apoptosis during development, regeneration and disease. Development. 2015;142:3253–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Cottini F, Hideshima T, Xu C, Sattler M, Dori M, Agnelli L, et al. Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med. 2014;20:599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luehders K, Sasai N, Davaapil H, Kurosawa-Yoshida M, Hiura H, Brah T, et al. The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway. Development. 2015;142:3351–61.

    Article  CAS  PubMed  Google Scholar 

  40. Packham S, Warsito D, Lin Y, Sadi S, Karlsson R, Sehat B. Nuclear translocation of IGF-1R via p150 Glued and an importin-β/RanBP2-dependent pathway in cancer cells. Oncogene. 2015;34:2227–38.

    Article  CAS  PubMed  Google Scholar 

  41. Warsito D, Sjöström S, Andersson S, Larsson O, Sehat B. Nuclear IGF1R is a transcriptional co-activator of LEF1/TCF. EMBO Rep. 2012;13:244–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hughes RM, Simons BW, Khan H, Miller R, Kugler V, Torquato S, et al. Asporin restricts mesenchymal stromal cell differentiation, alters the tumor microenvironment, and drives metastatic progression. Cancer Res. 2019;79:3636–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pinto M, Oliveira C, Cirnes L, Machado JC, Ramires M, Nogueira A, et al. Promoter methylation of TGFβ receptor I and mutation of TGFβ receptor II are frequent events in MSI sporadic gastric carcinomas. J Pathol. 2003;200:32–8.

    Article  CAS  PubMed  Google Scholar 

  44. Jingwen L, Xuqiao C, Ping L. The role of TGF-β and its receptors in gastrointestinal cancers. Transl Oncol. 2019;12:475–84.

    Article  Google Scholar 

  45. Satoyoshi R, Kuriyama S, Aiba N, Yashiro M, Tanaka M. Asporin activates coordinated invasion of scirrhous gastric cancer and cancer-associated fibroblasts. Oncogene. 2015;34:650–60.

    Article  CAS  PubMed  Google Scholar 

  46. Lee HH. ASO Author Reflections: borrmann type as a characteristic phenotype of advanced gastric cancer. Ann Surg Oncol. 2018;25:778–9.

  47. Li C, Oh SJ, Kim S, Hyung WJ, Yan M, Zhu ZG, et al. Macroscopic Borrmann type as a simple prognostic indicator in patients with advanced gastric cancer. Oncol. 2009;77:197–204.

  48. An JY, Kang TH, Choi MG, Noh JH, Sohn TS, Kim S. Borrmann type IV: an independent prognostic factor for survival in gastric cancer. J Gastrointest Surg. 2008;12:1364.

    Article  PubMed  Google Scholar 

  49. Ikeguchi M, Yamamoto O, Kaibara N. Management protocol for scirrhous gastric cancer. In Vivo. 2004;18:577–80.

  50. Santiago L, Daniels G, Wang D, Deng FM, Lee P. Wnt signaling pathway protein LEF1 in cancer, as a biomarker for prognosis and a target for treatment. Am J Cancer Res. 2017;7:1389–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: An indepth literature review. World J Exp Med. 2015;5:84–102.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hengcun L, Zheng Z, Lei C, Xiujing S, Yu Z, Qingdong G, et al. Cytoplasmic Asporin promotes cell migration by regulating TGF-β/Smad2/3 pathway and indicates a poor prognosis in colorectal cancer. Cell Death Dis. 2019;10:109.

    Article  CAS  Google Scholar 

  53. Fukata M, Chen A, Klepper A, Krishnareddy S, Vamadevan AS, Thomas LS, et al. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology. 2006;131:862–77.

    Article  CAS  PubMed  Google Scholar 

  54. Kovalovich K, Li W, DeAngelis R, Greenbaum LE, Ciliberto G, Taub R. IL-6 protects against Fas-mediated death by establishing a critical level of anti-apoptotic hepatic proteins FLIP, Bcl-2 and Bcl-xL. J Biol Chem. 2001;276:26605–13.

  55. Su F, Overholtzer M, Besser D, Levine AJ. WISP-1 attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase. Gene Dev. 2002;16:46–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (81570507, 81702314) and National Key Research and Development Program of China (2017YFC0113600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Li or Shutian Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Min, L., Li, H. et al. Asporin represses gastric cancer apoptosis via activating LEF1-mediated gene transcription independent of β-catenin. Oncogene 40, 4552–4566 (2021). https://doi.org/10.1038/s41388-021-01858-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01858-7

This article is cited by

Search

Quick links