Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CTHRC1 promotes liver metastasis by reshaping infiltrated macrophages through physical interactions with TGF-β receptors in colorectal cancer

Abstract

Metastasis is a major cause of cancer-related deaths. Tumor-intrinsic properties can determine whether tumor metastasis occurs or not. Here, by comparing the gene expression patterns in primary colorectal cancer (CRC) patients with or without metastasis, we found that Collagen Triple Helix Repeat Containing 1 (CTHRC1) in primary CRC served as a metastasis-associated gene. Animal experiments verified that CTHRC1 secreted by CRC cells promoted hepatic metastasis, which was closely correlated with macrophage infiltration. Depletion of macrophages by liposomal clodronate largely abolished the promoting effect of CTHRC1 on CRC liver metastasis. Furthermore, we demonstrated that CTHRC1 modulated macrophage polarization to M2 phenotypes through TGF-β signaling. A mechanistic study revealed that CTHRC1 bound directly to TGF-β receptor II and TGF-β receptor III, stabilized the TGF-β receptor complex, and activated TGF-β signaling. The combination treatment of CTHRC1 monoclonal antibody and anti-PD-1 blocking antibody effectively suppressed CRC hepatic metastasis. Taken together, our data demonstrated that CTHRC1 is an intrinsic marker of CRC metastasis and further revealed that CTHRC1 promoted CRC liver metastasis by reshaping infiltrated macrophages through TGF-β signaling, suggesting that CTHRC1 could be a potential biomarker for the early prediction of and a therapeutic target of CRC hepatic metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The metastasis-associated gene CTHRC1 is highly expressed in both primary colorectal cancer (CRC) and hepatic metastasis of CRC and predicts a poor prognosis.
Fig. 2: CTHRC1 derived from CRC cells promotes hepatic metastasis in a mouse model of CRC liver metastasis.
Fig. 3: CTHRC1 expression is closely correlated with M2 macrophage infiltration in the hepatic metastasis of CRC.
Fig. 4: CTHRC1 promotes hepatic metastasis of CRC in a macrophage-dependent manner in the mouse hepatic metastasis model.
Fig. 5: CTHRC1 promotes macrophage polarization to the M2 phenotype through TGF-β signaling in BMDMs.
Fig. 6: CTHRC1 directly interacts with extracellular components of TGF-β signaling and the ligand-receptor interaction of TGF-β signaling is enhanced by CTHRC1.
Fig. 7: The combination of CTHRC1 monoclonal antibody and anti-PD-1 monoclonal antibody attenuates the liver metastasis of CRC.

Similar content being viewed by others

Data availability

The RNA-seq data generated in this study have been deposited in the Sequence Read Archive (SRA) repository under accession code PRJNA669490 (for mouse) PRJNA714296 (for human). The authors declare that all the remaining data supporting the findings of this study are available within the article and its Supplementary information files or from the corresponding authors on reasonable request.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017;67:177–93.

    Article  PubMed  Google Scholar 

  3. Manfredi S, Lepage C, Hatem C, Coatmeur O, Faivre J, Bouvier AM. Epidemiology and management of liver metastases from colorectal cancer. Ann Surg. 2006;244:254–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chang GJ, Rodriguez-Bigas MA, Skibber JM, Moyer VA. Lymph node evaluation and survival after curative resection of colon cancer: systematic review. J Natl Cancer Inst. 2007;99:433–41.

    Article  PubMed  Google Scholar 

  5. Segnan N, Armaroli P. Early detection versus prevention in colorectal cancer screening: methods estimates and public health implications. Cancer. 2017;123:4767–9.

  6. Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XH. Metastasis organotropism: redefining the congenial soil. Dev Cell. 2019;49:375–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017;17:302–17.

    Article  CAS  PubMed  Google Scholar 

  8. Yamasaki M, Takemasa I, Komori T, Watanabe S, Sekimoto M, Doki Y, et al. The gene expression profile represents the molecular nature of liver metastasis in colorectal cancer. Int J Oncol. 2007;30:129–38.

    CAS  PubMed  Google Scholar 

  9. Ki DH, Jeung HC, Park CH, Kang SH, Lee GY, Lee WS, et al. Whole genome analysis for liver metastasis gene signatures in colorectal cancer. Int J Cancer. 2007;121:2005–12.

    Article  CAS  PubMed  Google Scholar 

  10. Stange DE, Engel F, Longerich T, Koo BK, Koch M, Delhomme N, et al. Expression of an ASCL2 related stem cell signature and IGF2 in colorectal cancer liver metastases with 11p15.5 gain. Gut. 2010;59:1236–44.

    Article  CAS  PubMed  Google Scholar 

  11. Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, Desai J, et al. Metastasis-associated gene expression changes predict poor outcomes in patients with dukes stage B and C colorectal cancer. Clin Cancer Res. 2009;15:7642–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu M, Zessin AS, Glover W, Hsu DS. Activation of the mTOR pathway by oxaliplatin in the treatment of colorectal cancer liver metastasis. PLoS One. 2017;12:e0169439.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gao B, Shao Q, Choudhry H, Marcus V, Dong K, Ragoussis J, et al. Weighted gene co-expression network analysis of colorectal cancer liver metastasis genome sequencing data and screening of anti-metastasis drugs. Int J Oncol. 2016;49:1108–18.

    Article  CAS  PubMed  Google Scholar 

  14. Pyagay P, Heroult M, Wang Q, Lehnert W, Belden J, Liaw L, et al. Collagen Triple Helix Repeat Containing 1, a novel secreted protein in injured and diseased arteries, inhibits collagen expression and promotes cell migration. Circulation Res. 2005;96:261–8.

    Article  CAS  PubMed  Google Scholar 

  15. Takeshita S, Fumoto T, Matsuoka K, Park KA, Aburatani H, Kato S, et al. Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J Clin Investig. 2013;123:3914–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jin YR, Stohn JP, Wang Q, Nagano K, Baron R, Bouxsein ML, et al. Inhibition of osteoclast differentiation and collagen antibody-induced arthritis by CTHRC1. Bone. 2017;97:153–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kimura H, Kwan KM, Zhang Z, Deng JM, Darnay BG, Behringer RR, et al. Cthrc1 is a positive regulator of osteoblastic bone formation. PLoS One. 2008;3:e3174.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen YL, Wang TH, Hsu HC, Yuan RH, Jeng YM. Overexpression of CTHRC1 in hepatocellular carcinoma promotes tumor invasion and predicts poor prognosis. PLoS One. 2013;8:e70324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang XM, You HY, Li Q, Ma H, Wang YH, Zhang YL, et al. CTHRC1 promotes human colorectal cancer cell proliferation and invasiveness by activating Wnt/PCP signaling. Int J Clin Exp Pathol. 2015;8:12793–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yan L, Yu J, Tan F, Ye GT, Shen ZY, Liu H, et al. SP1-mediated microRNA-520d-5p suppresses tumor growth and metastasis in colorectal cancer by targeting CTHRC1. Am J Cancer Res. 2015;5:1447–59.

    PubMed  PubMed Central  Google Scholar 

  21. Park EH, Kim S, Jo JY, Kim SJ, Hwang Y, Kim JM, et al. Collagen Triple Helix Repeat Containing-1 promotes pancreatic cancer progression by regulating migration and adhesion of tumor cells. Carcinogenesis. 2013;34:694–702.

    Article  CAS  PubMed  Google Scholar 

  22. Wang P, Wang YC, Chen XY, Shen ZY, Cao H, Zhang YJ, et al. CTHRC1 is upregulated by promoter demethylation and transforming growth factor-beta1 and may be associated with metastasis in human gastric cancer. Cancer Sci. 2012;103:1327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leclere L, Nir TS, Bazarsky M, Braitbard M, Schneidman-Duhovny D, Gat U. Dynamic evolution of the Cthrc1 genes, a newly defined collagen-like family. Genome Biol Evolution. 2020;12:3957–70.

    Article  CAS  Google Scholar 

  24. Tang L, Dai DL, Su M, Martinka M, Li G, Zhou Y. Aberrant expression of Collagen Triple Helix Repeat Containing 1 in human solid cancers. Clin Cancer Res. 2006;12:3716–22.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang N, Cui Y, Liu J, Zhu X, Wu H, Yang Z, et al. Multidimensional roles of Collagen Triple Helix Repeat Containing 1 (CTHRC1) in malignant cancers. J Cancer. 2016;7:2213–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim HC, Kim YS, Oh HW, Kim K, Oh SS, Kim JT, et al. Collagen Triple Helix Repeat Containing 1 (CTHRC1) acts via ERK-dependent induction of MMP9 to promote invasion of colorectal cancer cells. Oncotarget. 2014;5:519–29.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Qian Z, Zhang G, Song G, Shi J, Gong L, Mou Y, et al. Integrated analysis of genes associated with poor prognosis of patients with colorectal cancer liver metastasis. Oncotarget. 2017;8:25500–12.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xu C, Sun L, Jiang C, Zhou H, Gu L, Liu Y, et al. SPP1, analyzed by bioinformatics methods, promotes the metastasis in colorectal cancer by activating EMT pathway. Biomed Pharmacother. 2017;91:1167–77.

    Article  CAS  PubMed  Google Scholar 

  29. Ni S, Ren F, Xu M, Tan C, Weng W, Huang Z, et al. CTHRC1 overexpression predicts poor survival and enhances epithelial-mesenchymal transition in colorectal cancer. Cancer Med. 2018;7:5643–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim SK, Kim SY, Kim CW, Roh SA, Ha YJ, Lee JL, et al. A prognostic index based on an eleven gene signature to predict systemic recurrences in colorectal cancer. Exp Mol Med. 2019;51:1–12.

    PubMed  PubMed Central  Google Scholar 

  31. Perilli L, Pizzini S, Bisognin A, Mandruzzato S, Biasiolo M, Facciolli A, et al. Human miRNome profiling in colorectal cancer and liver metastasis development. Genomics Data. 2014;2:184–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li J, Wang Y, Ma M, Jiang S, Zhang X, Zhang Y, et al. Autocrine CTHRC1 activates hepatic stellate cells and promotes liver fibrosis by activating TGF-beta signaling. EBioMedicine. 2019;40:43–55.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125:5591–6.

    Article  CAS  PubMed  Google Scholar 

  34. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006;66:11238–46.

    Article  CAS  PubMed  Google Scholar 

  35. Zumsteg A, Christofori G. Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol. 2009;21:60–70.

    Article  PubMed  Google Scholar 

  36. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18:248–62.

    Article  CAS  PubMed  Google Scholar 

  37. Qin S, Zheng JH, Xia ZH, Qian J, Deng CL, Yang SL. CTHRC1 promotes wound repair by increasing M2 macrophages via regulating the TGF-beta and notch pathways. Biomed Pharmacother. 2019;113:108594.

    Article  CAS  PubMed  Google Scholar 

  38. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen X, Wang L, Li P, Song M, Qin G, Gao Q, et al. Dual TGF-beta and PD-1 blockade synergistically enhances MAGE-A3-specific CD8(+) T cell response in esophageal squamous cell carcinoma. Int J Cancer. 2018;143:2561–74.

    Article  CAS  PubMed  Google Scholar 

  40. Lind H, Gameiro SR, Jochems C, Donahue RN, Strauss J, Gulley JM, et al. Dual targeting of TGF-beta and PD-L1 via a bifunctional anti-PD-L1/TGF-betaRII agent: status of preclinical and clinical advances. J Immunother Cancer. 2020;8:e000433.

  41. Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9:274–84.

    Article  CAS  PubMed  Google Scholar 

  42. Obenauf AC, Massague J. Surviving at a distance: organ-specific metastasis. Trends Cancer. 2015;1:76–91.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dehne N, Mora J, Namgaladze D, Weigert A, Brune B. Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharm. 2017;35:12–19.

    Article  CAS  Google Scholar 

  44. Kim J, Bae JS. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016;2016:6058147.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rivera LB, Bergers G. Location, location, location: macrophage positioning within tumors determines pro- or antitumor activity. Cancer Cell. 2013;24:687–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–6.

    Article  CAS  PubMed  Google Scholar 

  48. Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 2019;30:36–50.

    Article  CAS  PubMed  Google Scholar 

  49. Muller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri A, et al. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol. 2017;18:234.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M. et al. An immune Atlas of clear cell renal cell carcinoma. Cell. 2017;169:736–49.e718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li LY, Yin KM, Bai YH, Zhang ZG, Di W, Zhang S. CTHRC1 promotes M2-like macrophage recruitment and myometrial invasion in endometrial carcinoma by integrin-Akt signaling pathway. Clin Exp Metastasis. 2019;36:351–63.

    Article  CAS  PubMed  Google Scholar 

  52. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.

    Article  CAS  PubMed  Google Scholar 

  53. Dhupkar P, Gordon N, Stewart J, Kleinerman ES. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Med. 2018;7:2654–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu D, Ni Z, Liu X, Feng S, Dong X, Shi X, et al. Beyond T cells: understanding the role of PD-1/PD-L1 in tumor-associated macrophages. J Immunol Res. 2019;2019:1919082.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Santoni M, Romagnoli E, Saladino T, Foghini L, Guarino S, Capponi M, et al. Triple negative breast cancer: key role of tumor-associated macrophages in regulating the activity of anti-PD-1/PD-L1 agents. Biochim Biophys Acta Rev Cancer. 2018;1869:78–84.

    Article  CAS  PubMed  Google Scholar 

  56. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 81802890 to X-LZ; No. 81902370 to S-HJ; No. 81871923 to JL; No. 31801212 to L-LY, No. 81872242 to Y-LZ), the Natural Science Foundation of Shanghai (No. 18ZR1436900 to X-LZ), the Shanghai Municipal Health Commission (No. 202040092 to X-LZ; No. 202040104, to Y-LZ; No. 201740105 to H-ZN), Program of Shanghai Academic/Technology Research Leader (No. 19XD1403400, to Z-GZ), Shanghai International Science and Technology Cooperation Fund (No. 18410721000, to Z-GZ), Excellent Academic Leader of Shanghai Municipal Health Bureau (No. 2018BR32, to Z-GZ), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (No. 20191809, to JL). We thank Dr Dong-Xue Li, Dr Shan Huang, Dr Li-li Zhu, Dr Shan Zhang, Yue Sun, and Kai-Xia Zhou for assistance with our experiments.

Author information

Authors and Affiliations

Authors

Contributions

S-HJ conceived the project. Y-HW, JL, and Z-GZ designed experiments, and interpreted data in the manuscript. X-LZ, L-PH, W-TQ, XW, C-JX, G-AT, X-MY, Y-LZ, L-LY, LZ, H-ZN, and QL performed the experiments. QY performed bioinformatics analyses. X-LZ wrote the manuscript. S-HJ, Y-HW, JL, and Z-GZ edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yan-Li Zhang, Jun Li, Ya-Hui Wang or Shu-Heng Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XL., Hu, LP., Yang, Q. et al. CTHRC1 promotes liver metastasis by reshaping infiltrated macrophages through physical interactions with TGF-β receptors in colorectal cancer. Oncogene 40, 3959–3973 (2021). https://doi.org/10.1038/s41388-021-01827-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01827-0

This article is cited by

Search

Quick links