Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LncRNA PINK1-AS promotes Gαi1-driven gastric cancer tumorigenesis by sponging microRNA-200a

Abstract

Gastric cancer (GC) is one of the leading causes of human mortality around the world. We have previously shown that Gαi1 (the inhibitory subunit 1 of the heterotrimeric guanine nucleotide-binding protein) recruitment to ligand-activated receptor tyrosine kinases (RTKs) is essential for signaling. Testing its role in GC cancer-promoting functions, we found that Gαi1 is upregulated in human GC, correlating with poor overall survival. In established and primary human GC cells, Gαi1 shRNA (small hairpin RNA) or knockout produced significant anti-GC cell activity, proliferation and migration was inhibited, and apoptosis was activated. Conversely, ectopic Gαi1 overexpression promoted proliferation and migration of GC cells in vitro. By examining the tumor-suppressive miRNA microRNA-200a (miR-200a), we found that miR-200a directly silenced Gαi1 to induce anti-GC cell activity. The expression of miR-200a was downregulated in human GC, correlating with upregulation of a novel miR-200a-targeting long non-coding RNA (LncRNA), PINK1 (PTEN Induced Kinase 1)-AS. RNA immunoprecipitation, RNA-pull down, and RNA fluorescence in situ hybridization assays confirmed that PINK1-AS directly binds to miR-200a. Silencing PINK1-AS in GC cells led to miR-200a accumulation, Gαi1 downregulation, and inhibition of GC cell progression in vitro, whereas PINK1-AS upregulation produced the converse results. Significantly, anti-GC cell activity induced by PINK1-AS shRNA was ameliorated by the expression of miR-200a antisense or the 3ʹ-UTR (untranslated region)-depleted Gαi1. In vivo, the growth of subcutaneous MGC-803 xenografts in nude mice was inhibited by PINK1-AS shRNA, but accelerated by PINK1-AS overexpression. Patient-derived GC xenograft growth in nude mice was largely inhibited after intratumoral injection of PINK1-AS shRNA lentivirus. In conclusion, PINK1-AS promotes Gαi1-driven GC progression by sponging miR-200a.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gαi1 overexpression in GC.
Fig. 2: Gαi1 promotes GC cell progression in vitro.
Fig. 3: Gαi1 silencing by miR-200a produces significant anti-GC cell activity.
Fig. 4: PINK1-AS sponges miR-200a to promote Gαi1 expression.
Fig. 5: PINK1-AS expedites malignant behaviors of GC cells.
Fig. 6: PINK1-AS silencing provokes apoptosis activation in GC cells.
Fig. 7: PINK1-AS shRNA-induced anti-GC cell activity is due to regulating miR-200a-Gαi1 cascade.
Fig. 8: PINK1-AS is required for MGC-803 xenograft growth in nude mice.
Fig. 9: Patient-derived GC xenograft growth is inhibited after intratumoral injection of sh-PINK1-AS lentivirus.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: a cancer J clinicians. 2020;70:7–30.

    Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: a cancer J clinicians. 2019;69:7–34.

    Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: a cancer J clinicians. 2018;68:7–30.

    Google Scholar 

  4. Shah MA. Gastrointestinal cancer: targeted therapies in gastric cancer-the dawn of a new era. Nat Rev Clin Oncol. 2014;11:10–11.

    Article  CAS  PubMed  Google Scholar 

  5. Wadhwa R, Song S, Lee JS, Yao Y, Wei Q, Ajani JA. Gastric cancer-molecular and clinical dimensions. Nat Rev Clin Oncol. 2013;10:643–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao C, Huang X, Han Y, Wan Y, Birnbaumer L, Feng GS, et al. Galpha(i1) and Galpha(i3) are required for epidermal growth factor-mediated activation of the Akt-mTORC1 pathway. Sci Signal. 2009;2:ra17.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sun J, Huang W, Yang SF, Zhang XP, Yu Q, Zhang ZQ, et al. Galphai1 and Galphai3mediate VEGF-induced VEGFR2 endocytosis, signaling and angiogenesis. Theranostics. 2018;8:4695–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marshall J, Zhou XZ, Chen G, Yang SQ, Li Y, Wang Y, et al. Antidepression action of BDNF requires and is mimicked by Galphai1/3 expression in the hippocampus. Proc Natl Acad Sci U.S.A. 2018;115:E3549–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu YY, Chen MB, Cheng L, Zhang ZQ, Yu ZQ, Jiang Q, et al. MicroRNA-200a downregulation in human glioma leads to Galphai1 over-expression, Akt activation, and cell proliferation. Oncogene. 2018;37:2890–902.

    Article  CAS  PubMed  Google Scholar 

  10. Niu ZS, Niu XJ, Wang WH. Long non-coding RNAs in hepatocellular carcinoma: potential roles and clinical implications. World J Gastroenterol. 2017;23:5860–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huo X, Han S, Wu G, Latchoumanin O, Zhou G, Hebbard L, et al. Dysregulated long noncoding RNAs (lncRNAs) in hepatocellular carcinoma: implications for tumorigenesis, disease progression, and liver cancer stem cells. Mol cancer. 2017;16:165.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang X, Xie X, Xiao YF, Xie R, Hu CJ, Tang B, et al. The emergence of long non-coding RNAs in the tumorigenesis of hepatocellular carcinoma. Cancer Lett. 2015;360:119–24.

    Article  CAS  PubMed  Google Scholar 

  13. Ma L, Cao J, Liu L, Du Q, Li Z, Zou D, et al. LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic acids Res. 2019;47:D128–34.

    Article  CAS  PubMed  Google Scholar 

  14. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol cell Biol. 2021;22:96–118.

    Article  CAS  PubMed  Google Scholar 

  15. Tan H, Zhang S, Zhang J, Zhu L, Chen Y, Yang H, et al. Long non-coding RNAs in gastric cancer: new emerging biological functions and therapeutic implications. Theranostics. 2020;10:8880–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie S, Chang Y, Jin H, Yang F, Xu Y, Yan X, et al. Non-coding RNAs in gastric cancer. Cancer Lett. 2020;493:55–70.

    Article  CAS  PubMed  Google Scholar 

  17. Hao NB, He YF, Li XQ, Wang K, Wang RL. The role of miRNA and lncRNA in gastric cancer. Oncotarget. 2017;8:81572–82.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li H, Yu B, Li J, Su L, Yan M, Zhu Z, et al. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget. 2014;5:2318–29.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhao J, Du P, Cui P, Qin Y, Hu C, Wu J, et al. LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene. 2018;37:4094–109.

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Wu Z, Yuan J, Sun L, Lin L, Huang N, et al. Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculogenic mimicry and angiogenesis. Cancer Lett. 2017;395:31–44.

    Article  CAS  PubMed  Google Scholar 

  21. Sun M, Nie F, Wang Y, Zhang Z, Hou J, He D, et al. LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer Res. 2016;76:6299–310.

    Article  CAS  PubMed  Google Scholar 

  22. Peng W, Si S, Zhang Q, Li C, Zhao F, Wang F, et al. Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression. J Exp Clin cancer Res: CR. 2015;34:79.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wei GH, Wang X. lncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway. Eur Rev Med Pharmacol Sci. 2017;21:3850–6.

    PubMed  Google Scholar 

  24. Qi P, Xu MD, Shen XH, Ni SJ, Huang D, Tan C, et al. Reciprocal repression between TUSC7 and miR-23b in gastric cancer. Int J cancer. 2015;137:1269–78.

    Article  CAS  PubMed  Google Scholar 

  25. Dan J, Wang J, Wang Y, Zhu M, Yang X, Peng Z, et al. LncRNA-MEG3 inhibits proliferation and metastasis by regulating miRNA-21 in gastric cancer. Biomed Pharmacother. 2018;99:931–8.

    Article  CAS  PubMed  Google Scholar 

  26. Chen W, Chen M, Xu Y, Chen X, Zhou P, Zhao X, et al. Long non-coding RNA THOR promotes human osteosarcoma cell growth in vitro and in vivo. Biochemical biophysical Res Commun. 2018;499:913–9.

    Article  CAS  Google Scholar 

  27. Feng L, Li H, Li F, Bei S, Zhang X. LncRNA KCNQ1OT1 regulates microRNA-9-LMX1A expression and inhibits gastric cancer cell progression. Aging. 2020;12:707–17.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang X, Li J, Li F, Zhao Z, Feng L. LINC00682 inhibits gastric cancer cell progression via targeting microRNA-9-LMX1A signaling axis. Aging. 2019;11:11358–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang L, Zheng LY, Tian Y, Zhang ZQ, Dong WL, Wang XF, et al. C6 ceramide dramatically enhances docetaxel-induced growth inhibition and apoptosis in cultured breast cancer cells: a mechanism study. Exp Cell Res. 2015;332:47–59.

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Xu S, Yin M, Jin ZG. Essential roles of Gab1 tyrosine phosphorylation in growth factor-mediated signaling and angiogenesis. Int J Cardiol. 2015;181:180–4.

    Article  PubMed  Google Scholar 

  31. Zhang YM, Zhang ZQ, Liu YY, Zhou X, Shi XH, Jiang Q, et al. Requirement of Galphai1/3-Gab1 signaling complex for keratinocyte growth factor-induced PI3K-AKT-mTORC1 activation. J Invest Dermatol. 2015;135:181–91.

    Article  CAS  PubMed  Google Scholar 

  32. Li PH, Wu JX, Zheng JN, Pei DS. A sphingosine kinase-1 inhibitor, SKI-II, induces growth inhibition and apoptosis in human gastric cancer cells. Asian Pac J Cancer Prev. 2014;15:10381–5.

    Article  PubMed  Google Scholar 

  33. Ji D, Zhang Z, Cheng L, Chang J, Wang S, Zheng B, et al. The combination of RAD001 and MK-2206 exerts synergistic cytotoxic effects against PTEN mutant gastric cancer cells: involvement of MAPK-dependent autophagic, but not apoptotic cell death pathway. PloS ONE. 2014;9:e85116.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shrestha S, Hsu SD, Huang WY, Huang HY, Chen W, Weng SL, et al. A systematic review of microRNA expression profiling studies in human gastric cancer. Cancer Med. 2014;3:878–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen Z, Saad R, Jia P, Peng D, Zhu S, Washington MK, et al. Gastric adenocarcinoma has a unique microRNA signature not present in esophageal adenocarcinoma. Cancer. 2013;119:1985–93.

    Article  CAS  PubMed  Google Scholar 

  36. Mirzaei S, Baghaei K, Parivar K, Hashemi M, Asadzadeh, Aghdaei H. The expression level changes of microRNAs 200a/205 in the development of invasive properties in gastric cancer cells through epithelial-mesenchymal transition. Eur J Pharmacol. 2019;857:172426.

    Article  CAS  PubMed  Google Scholar 

  37. Guo T, Zhang Y, Qu X, Che X, Li C, Fan Y, et al. miR-200a enhances TRAIL-induced apoptosis in gastric cancer cells by targeting A20. Cell Biol Int. 2018;42:506–14.

    Article  CAS  PubMed  Google Scholar 

  38. Li D, Wang J, Zhang M, Hu X, She J, Qiu X, et al. LncRNA MAGI2-AS3 is regulated by BRD4 and promotes gastric cancer progression via maintaining ZEB1 overexpression by sponging miR-141/200a. Mol Ther Nucleic acids. 2020;19:109–23.

    Article  PubMed  Google Scholar 

  39. Gu Y, Chen T, Li G, Yu X, Lu Y, Wang H, et al. LncRNAs: emerging biomarkers in gastric cancer. Future Oncol. 2015;11:2427–41.

    Article  CAS  PubMed  Google Scholar 

  40. Sun M, Nie FQ, Wang ZX, De W. Involvement of lncRNA dysregulation in gastric cancer. Histol Histopathol. 2016;31:33–9.

    CAS  PubMed  Google Scholar 

  41. Yuan L, Xu ZY, Ruan SM, Mo S, Qin JJ, Cheng XD. Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance. Mol cancer. 2020;19:96.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu HT, Liu S, Liu L, Ma RR, Gao P. EGR1-mediated transcription of lncRNA-HNF1A-AS1 promotes cell-cycle progression in gastric cancer. Cancer Res. 2018;78:5877–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang G, Li S, Lu J, Ge Y, Wang Q, Ma G, et al. LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer. Mol cancer. 2018;17:87.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sun TT, He J, Liang Q, Ren LL, Yan TT, Yu TC, et al. LncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discov. 2016;6:784–801.

    Article  CAS  PubMed  Google Scholar 

  45. He W, Liang B, Wang C, Li S, Zhao Y, Huang Q, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene. 2019;38:4637–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hedner C, Borg D, Nodin B, Karnevi E, Jirstrom K, Eberhard J. Expression and prognostic significance of human epidermal growth factor receptors 1 and 3 in gastric and esophageal adenocarcinoma. PloS ONE. 2016;11:e0148101.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Satoh T, Lee KH, Rha SY, Sasaki Y, Park SH, Komatsu Y, et al. Randomized phase II trial of nimotuzumab plus irinotecan versus irinotecan alone as second-line therapy for patients with advanced gastric cancer. Gastric Cancer. 2015;18:824–32.

    Article  CAS  PubMed  Google Scholar 

  48. Satoh T, Xu RH, Chung HC, Sun GP, Doi T, Xu JM, et al. Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: TyTAN-a randomized, phase III study. J Clin Oncol. 2014;32:2039–49.

    Article  CAS  PubMed  Google Scholar 

  49. Wong H, Yau T. Molecular targeted therapies in advanced gastric cancer: does tumor histology matter? Therapeutic Adv Gastroenterol. 2013;6:15–31.

    Article  CAS  Google Scholar 

  50. Park CK, Park JS, Kim HS, Rha SY, Hyung WJ, Cheong JH, et al. Receptor tyrosine kinase amplified gastric cancer: clinicopathologic characteristics and proposed screening algorithm. Oncotarget. 2016;7:72099–112.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    Article  CAS  PubMed  Google Scholar 

  52. Bai JY, Li Y, Xue GH, Li KR, Zheng YF, Zhang ZQ, et al. Requirement of Galphai1 and Galphai3 in interleukin-4-induced signaling, macrophage M2 polarization and allergic asthma response. Theranostics. 2021;11:4894–909.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was generously supported by grants from the National Natural Science Foundation of China (81922025, 81802386, 81970823, 81974388, 81302195, 31371139, 81571282, 81771457, and 81670878), and the Natural Science Foundation of Jiangsu Province (BK20170060), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Suzhou People’s Livelihood Science and Technology project (sysd2018205). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Yao, Li-na Zhou, Zhuo-yan Ling or Cong Cao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Wang, Y., Song, Y. et al. LncRNA PINK1-AS promotes Gαi1-driven gastric cancer tumorigenesis by sponging microRNA-200a. Oncogene 40, 3826–3844 (2021). https://doi.org/10.1038/s41388-021-01812-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01812-7

This article is cited by

Search

Quick links