Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oncogenic SNORD12B activates the AKT-mTOR-4EBP1 signaling in esophageal squamous cell carcinoma via nucleus partitioning of PP-1α

Abstract

Esophageal cancer is a complex malignancy and the sixth leading cause of cancer death worldwide. In Eastern Asia including China, about 90% of all incident cases have esophageal squamous cell carcinoma (ESCC). Mounting evidence elucidates that aberrant expression of various non-coding RNAs (ncRNAs) contributes to ESCC progression, but it remains unclear how small nucleolar RNAs (snoRNAs) are involved in ESCC development. We systemically screened clinically relevant snoRNAs in ESCC via integrative analyses of The Cancer Genome Atlas (TCGA) data and validation in ESCC tissues. We found that snoRNA SNORD12B was one of the most evidently upregulated snoRNAs in ESCC specimens and its high expression was significantly associated with poor prognosis of patients. SNORD12B profoundly promoted proliferation, migration, invasion, and metastasis of ESCC cells in vitro and in vivo, indicating its oncogene nature. In particular, SNORD12B could interact with PP-1α, one of the three catalytic subunits of serine/threonine protein phosphatase 1, which is a major phosphatase that directly dephosphorylates AKT to suppress its activation. Interestingly, high levels of SNORD12B in ESCC cells could break interactions between 14-3-3ζ and PP-1α, abolish the retention of PP-1α in the cytosol by 14-3-3ζ and relocate PP-1α from the cytosol to the nucleus. This led to sequestered PP-1α in the nucleus, enhanced phosphorylation of AKT in the cytosol, activated AKT-mTOR-4EBP1 signaling, and, thus, ESCC progression. These insights would improve our understanding of how snoRNAs contribute to tumorigenesis and highlight the potential of snoRNAs as future therapeutic targets against cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SNORD12B was one of the most significantly upregulated snoRNAs in ESCC specimens.
Fig. 2: SnoRNA SNORD12B accelerated malignant proliferation of ESCC cells in vitro and in vivo.
Fig. 3: SnoRNA SNORD12B promoted metastasis of ESCC cells in vitro and in vivo.
Fig. 4: SnoRNA SNORD12B interacted with PP-1α and promoted shuttling of PP-1α to nucleus.
Fig. 5: SNORD12B activated the AKT-mTOR-4EBP1 signaling.
Fig. 6: In normal cells,14-3-3ζ binds to PP-1α and cause retention of PP-1α in the cytosol.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  Google Scholar 

  2. Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154:360–73.

    Article  PubMed  Google Scholar 

  3. Tran GD, Sun XD, Abnet CC, Fan JH, Dawsey SM, Dong ZW, et al. Prospective study of risk factors for esophageal and gastric cancers in the Linxian general population trial cohort in China. Int J Cancer. 2005;113:456–63.

    Article  CAS  PubMed  Google Scholar 

  4. Islami F, Kamangar F, Aghcheli K, Fahimi S, Semnani S, Taghavi N, et al. Epidemiologic features of upper gastrointestinal tract cancers in Northeastern Iran. Br J Cancer. 2004;90:1402–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu M, Liu AM, Kampman E, Zhang ZF, Van’t Veer P, Wu DL, et al. Green tea drinking, high tea temperature and esophageal cancer in high- and low-risk areas of Jiangsu Province, China: a population-based case-control study. Int J Cancer. 2009;124:1907–13.

    Article  CAS  PubMed  Google Scholar 

  6. Chang J, Zhong R, Tian J, Li J, Zhai K, Ke J, et al. Exome-wide analyses identify low-frequency variant in CYP26B1 and additional coding variants associated with esophageal squamous cell carcinoma. Nat Genet. 2018;50:338–43.

    Article  CAS  PubMed  Google Scholar 

  7. Wu C, Wang Z, Song X, Feng XS, Abnet CC, He J, et al. Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations. Nat Genet. 2014;46:1001–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu C, Kraft P, Zhai K, Chang J, Wang Z, Li Y, et al. Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat Genet. 2012;44:1090–7.

    Article  CAS  PubMed  Google Scholar 

  9. Abnet CC, Wang Z, Song X, Hu N, Zhou FY, Freedman ND, et al. Genotypic variants at 2q33 and risk of esophageal squamous cell carcinoma in China: a meta-analysis of genome-wide association studies. Hum Mol Genet. 2012;21:2132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu C, Hu Z, He Z, Jia W, Wang F, Zhou Y, et al. Genome-wide association study identifies three new susceptibility loci for esophageal squamous-cell carcinoma in Chinese populations. Nat Genet. 2011;43:679–84.

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka F, Yamamoto K, Suzuki S, Inoue H, Tsurumaru M, Kajiyama Y, et al. Strong interaction between the effects of alcohol consumption and smoking on oesophageal squamous cell carcinoma among individuals with ADH1B and/or ALDH2 risk alleles. Gut. 2010;59:1457–64.

    Article  CAS  PubMed  Google Scholar 

  12. Wang LD, Zhou FY, Li XM, Sun LD, Song X, Jin Y, et al. Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet. 2010;42:759–63.

    Article  CAS  PubMed  Google Scholar 

  13. Abnet CC, Freedman ND, Hu N, Wang Z, Yu K, Shu XO, et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet. 2010;42:764–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cui R, Kamatani Y, Takahashi A, Usami M, Hosono N, Kawaguchi T, et al. Functional variants in ADH1B and ALDH2 coupled with alcohol and smoking synergistically enhance esophageal cancer risk. Gastroenterology. 2009;137:1768–75.

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Li M, Wang Z, Han S, Tang X, Ge Y, et al. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. J Biol Chem. 2015;290:3925–35.

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, Lu Y, Ren Y, Yuan J, Zhang N, Kimball H, et al. Starvation-induced suppression of DAZAP1 by miR-10b integrates splicing control into TSC2-regulated oncogenic autophagy in esophageal squamous cell carcinoma. Theranostics. 2020;10:4983–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu J, Liu ZX, Wu QN, Lu YX, Wong CW, Miao L, et al. Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nat Commun. 2020;11:1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang H, Hua Y, Jiang Z, Yue J, Shi M, Zhen X, et al. Cancer-associated fibroblast-promoted LncRNA DNM3OS confers radioresistance by regulating DNA damage response in esophageal squamous cell carcinoma. Clin Cancer Res. 2019;25:1989–2000.

    Article  CAS  PubMed  Google Scholar 

  19. You BH, Yoon JH, Kang H, Lee EK, Lee SK, Nam JW. HERES, a lncRNA that regulates canonical and noncanonical Wnt signaling pathways via interaction with EZH2. Proc Natl Acad Sci USA. 2019;116:24620–9.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang XD, Huang GW, Xie YH, He JZ, Guo JC, Xu XE, et al. The interaction of lncRNA EZR-AS1 with SMYD3 maintains overexpression of EZR in ESCC cells. Nucleic Acids Res. 2018;46:1793–809.

    Article  CAS  PubMed  Google Scholar 

  21. Tan DSW, Chong FT, Leong HS, Toh SY, Lau DP, Kwang XL, et al. Long noncoding RNA EGFR-AS1 mediates epidermal growth factor receptor addiction and modulates treatment response in squamous cell carcinoma. Nat Med. 2017;23:1167–75.

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Chen Z, Tian L, Zhou C, He MY, Gao Y, et al. LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut. 2014;63:1700–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fong LY, Taccioli C, Palamarchuk A, Tagliazucchi GM, Jing R, Smalley KJ, et al. Abrogation of esophageal carcinoma development in miR-31 knockout rats. Proc Natl Acad Sci USA. 2020;117:6075–85.

    Article  CAS  PubMed  Google Scholar 

  24. Sudo K, Kato K, Matsuzaki J, Boku N, Abe S, Saito Y, et al. Development and validation of an esophageal squamous cell carcinoma detection model by large-scale MicroRNA profiling. JAMA Netw Open. 2019;2:e194573.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Luo A, Zhou X, Shi X, Zhao Y, Men Y, Chang X, et al. Exosome-derived miR-339-5p mediates radiosensitivity by targeting Cdc25A in locally advanced esophageal squamous cell carcinoma. Oncogene. 2019;38:4990–5006.

    Article  CAS  PubMed  Google Scholar 

  26. Matera AG, Terns RM, Terns MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol. 2007;8:209–20.

    Article  CAS  PubMed  Google Scholar 

  27. Bratkovic T, Rogelj B. The many faces of small nucleolar RNAs. Biochim Biophys Acta. 2014;1839:438–43.

    Article  CAS  PubMed  Google Scholar 

  28. Dupuis-Sandoval F, Poirier M, Scott MS. The emerging landscape of small nucleolar RNAs in cell biology. Wiley Interdiscip Rev RNA. 2015;6:381–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baillat D, Hakimi MA, Naar AM, Shilatifard A, Cooch N, Shiekhattar R. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell. 2005;123:265–76.

    Article  CAS  PubMed  Google Scholar 

  30. Huang C, Shi J, Guo Y, Huang W, Huang S, Ming S, et al. A snoRNA modulates mRNA 3’ end processing and regulates the expression of a subset of mRNAs. Nucleic Acids Res. 2017;45:8647–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brameier M, Herwig A, Reinhardt R, Walter L, Gruber J. Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 2011;39:675–86.

    Article  CAS  PubMed  Google Scholar 

  32. Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science. 2006;311:230–2.

    Article  CAS  PubMed  Google Scholar 

  33. Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, Chen W, et al. A human snoRNA with microRNA-like functions. Mol Cell. 2008;32:519–28.

    Article  CAS  PubMed  Google Scholar 

  34. Schubert T, Pusch MC, Diermeier S, Benes V, Kremmer E, Imhof A, et al. Df31 protein and snoRNAs maintain accessible higher-order structures of chromatin. Mol Cell. 2012;48:434–44.

    Article  CAS  PubMed  Google Scholar 

  35. Falaleeva M, Pages A, Matuszek Z, Hidmi S, Agranat-Tamir L, Korotkov K, et al. Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing. Proc Natl Acad Sci USA. 2016;113:E1625–1634.

    Article  CAS  PubMed  Google Scholar 

  36. Siprashvili Z, Webster DE, Johnston D, Shenoy RM, Ungewickell AJ, Bhaduri A, et al. The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer. Nat Genet. 2016;48:53–58.

    Article  CAS  PubMed  Google Scholar 

  37. Xu L, Ziegelbauer J, Wang R, Wu WW, Shen RF, Juhl H, et al. Distinct profiles for mitochondrial t-RNAs and small nucleolar RNAs in locally invasive and metastatic colorectal cancer. Clin Cancer Res. 2016;22:773–84.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou F, Liu Y, Rohde C, Pauli C, Gerloff D, Kohn M, et al. AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nat Cell Biol. 2017;19:844–55.

    Article  CAS  PubMed  Google Scholar 

  39. Gong J, Li Y, Liu CJ, Xiang Y, Li C, Ye Y, et al. A Pan-cancer analysis of the expression and clinical relevance of small nucleolar RNAs in human cancer. Cell Rep. 2017;21:1968–81.

    Article  CAS  PubMed  Google Scholar 

  40. Cao P, Yang A, Wang R, Xia X, Zhai Y, Li Y, et al. Germline duplication of SNORA18L5 increases risk for HBV-related hepatocellular carcinoma by altering localization of ribosomal proteins and decreasing levels of p53. Gastroenterology. 2018;155:542–56.

    Article  CAS  PubMed  Google Scholar 

  41. Fan RH, Guo JN, Yan W, Huang MD, Zhu CL, Yin YM, et al. Small nucleolar host gene 6 promotes esophageal squamous cell carcinoma cell proliferation and inhibits cell apoptosis. Oncol Lett. 2018;15:6497–502.

    PubMed  PubMed Central  Google Scholar 

  42. Xiao L, Gong LL, Yuan D, Deng M, Zeng XM, Chen LL, et al. Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation. Cell Death Differ. 2010;17:1448–62.

    Article  CAS  PubMed  Google Scholar 

  43. Jérôme M, Paudel HK. 14-3-3ζ regulates nuclear trafficking of protein phosphatase 1α (PP1α) in HEK-293 cells. Arch Biochem Biophys. 2014;558:28–35.

    Article  PubMed  Google Scholar 

  44. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR, et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell. 2010;17:249–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature. 2012;485:55–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang N, Song Y, Xu Y, Liu J, Shen Y, Zhou L, et al. MED13L integrates Mediator-regulated epigenetic control into lung cancer radiosensitivity. Theranostics. 2020;10:9378–94.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang N, Li Y, Xie M, Song Y, Liu J, Lei T, et al. DACT2 modulated by TFAP2A-mediated allelic transcription promotes EGFR-TKIs efficiency in advanced lung adenocarcinoma. Biochem Pharmacol. 2020;172:113772.

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Zhang N, Zhang L, Song Y, Liu J, Yu J, et al. Oncogene HSPH1 modulated by the rs2280059 genetic variant diminishes EGFR-TKIs efficiency in advanced lung adenocarcinoma. Carcinogenesis. 2020;41:1195–202.

    Article  CAS  PubMed  Google Scholar 

  50. Yuan J, Song Y, Pan W, Li Y, Xu Y, Xie M, et al. LncRNA SLC26A4-AS1 suppresses the MRN complex-mediated DNA repair signaling and thyroid cancer metastasis by destabilizing DDX5. Oncogene. 2020;39:6664–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31671300, 31871306); Taishan Scholars Program of Shandong Province (tsqn20161060); Program of Science and Technology for the youth innovation team in universities of Shandong Province (2020KJL001); Medical and Health Science and Technology Development Plan of Shandong Province (2019WS202); Youth Foundation Programs of Shandong Academy of Medical Sciences (2018-28). The authors would like to thank the many individuals who participated in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, B., Liu, J., Zhang, N. et al. Oncogenic SNORD12B activates the AKT-mTOR-4EBP1 signaling in esophageal squamous cell carcinoma via nucleus partitioning of PP-1α. Oncogene 40, 3734–3747 (2021). https://doi.org/10.1038/s41388-021-01809-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01809-2

This article is cited by

Search

Quick links