Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An aging mouse model of human chronic myeloid leukemia

Abstract

Chronic myeloid leukemia (CML) is an age-dependent blood malignancy. Like many other age-dependent human diseases, laboratory animal research of CML uses young mice that do not factor in the influence of aging. To understand how aging may impact animal modeling of human age-dependent diseases, we established the first aging mouse model of human CML in BALB/c mice in the advanced age defined by 75% survival. This model was developed by noncytotoxic depletion of bone marrow lineage-positive cells followed by BCR-ABL retroviral transduction and transplantation. CML developed in aging mice shared many similarities to that in young mice, but had increased incidence of anemia that is often seen in human CML. Importantly, we showed that aging of both donor hematopoietic stem cells and recipient bone marrow niche impacted BCR-ABL mediated leukemogenesis and leukemia spectrum. Optimal CML induction relied on age-matching for donors and recipients, and cross-transplantation between young and old mice produced a mixture of different leukemia. Therefore, our model provides initial evidence of the feasibility and merit of CML modeling in aging mice and offers a new tool for future studies of CML stem cell drug resistance and therapeutic intervention in which aging would be taken into consideration as an influencing factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The impact of aging on baseline hematological parameters in BALB/c mice.
Fig. 2: The 5-FU myeloablation protocol was not suitable for CML induction in aging BALB/c mice.
Fig. 3: Efficient CML induction in aging BALB/c mice by the immunomagnetic lineage depletion protocol.
Fig. 4: Histopathology of CML in aging mice.
Fig. 5: Aging of both HSCs and bone marrow niche affected the pathogenesis of CML.

Similar content being viewed by others

References

  1. Deininger MW, Druker BJ. Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharm Rev. 2003;55:401–23.

    Article  CAS  Google Scholar 

  2. Hehlmann R, Hochhaus A, Baccarani M, European L. Chronic myeloid leukaemia. Lancet. 2007;370:342–50. https://doi.org/10.1016/S0140-6736(07)61165-9.

    Article  CAS  PubMed  Google Scholar 

  3. Nowell PC. Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest. 2007;117:2033–5. https://doi.org/10.1172/JCI31771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.

    Article  CAS  Google Scholar 

  5. Rowley JD. Ph1-positive leukaemia, including chronic myelogenous leukaemia. Clin Haematol. 1980;9:55–86.

    CAS  PubMed  Google Scholar 

  6. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984;36:93–9.

    Article  CAS  Google Scholar 

  7. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247:824–30.

    Article  CAS  Google Scholar 

  8. Kelliher MA, McLaughlin J, Witte ON, Rosenberg N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci U.S.A. 1990;87:6649–53.

    Article  CAS  Google Scholar 

  9. Elefanty AG, Hariharan IK, Cory S. bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J. 1990;9:1069–78.

    Article  CAS  Google Scholar 

  10. Gishizky ML, Johnson-White J, Witte ON. Efficient transplantation of BCR-ABL-induced chronic myelogenous leukemia-like syndrome in mice. Proc Natl Acad Sci U.S.A. 1993;90:3755–9.

    Article  CAS  Google Scholar 

  11. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N. Engl J Med. 2006;355:1253–61. https://doi.org/10.1056/NEJMra061808. e-pub ahead of print 2006/09/23.

    Article  CAS  PubMed  Google Scholar 

  12. Melo JV, Barnes DJ. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer. 2007;7:441–53.

    Article  CAS  Google Scholar 

  13. Wang JC, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 2005;15:494–501. https://doi.org/10.1016/j.tcb.2005.07.004.

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Huang S, Chen JL. Understanding of leukemic stem cells and their clinical implications. Mol Cancer. 2017;16:2 https://doi.org/10.1186/s12943-016-0574-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl J Med. 2006;355:2408–17.

    Article  CAS  Google Scholar 

  16. Pophali PA, Patnaik MM. The role of new tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer J. 2016;22:40–50. https://doi.org/10.1097/PPO.0000000000000165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hao T, Li-Talley M, Buck A, Chen WY. An emerging trend of rapid increase of leukemia but not all cancers in the aging population in the United States. Sci Rep. 2019;9:12070. https://doi.org/10.1038/s41598-019-48445-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL, et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood. 2003;101:4701–7.

    Article  CAS  Google Scholar 

  19. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99:319–25.

    Article  CAS  Google Scholar 

  20. Holtz MS, Slovak ML, Zhang F, Sawyers CL, Forman SJ, Bhatia R. Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood. 2002;99:3792–800.

    Article  CAS  Google Scholar 

  21. Chomel JC, Bonnet ML, Sorel N, Bertrand A, Meunier MC, Fichelson S, et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood. 2011;118:3657–60. https://doi.org/10.1182/blood-2011-02-335497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC, et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood. 1998;92:3780–92.

    Article  CAS  Google Scholar 

  23. Zhang X, Ren R. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood. 1998;92:3829–40.

    Article  CAS  Google Scholar 

  24. Li S, Ilaria RL Jr, Million RP, Daley GQ, Van Etten RA. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med. 1999;189:1399–412.

    Article  CAS  Google Scholar 

  25. Dash AB, Williams IR, Kutok JL, Tomasson MH, Anastasiadou E, Lindahl K. et al. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci U.S.A. 2002;99:7622–7. https://doi.org/10.1073/pnas.102583199. e-pub ahead of print 2002/05/29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ye D, Wolff N, Li L, Zhang S, Ilaria RL Jr. STAT5 signaling is required for the efficient induction and maintenance of CML in mice. Blood. 2006;107:4917–25.

    Article  CAS  Google Scholar 

  27. Yuan H, Wang Z, Li L, Zhang H, Modi H, Horne D. et al. Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood. 2012;119:1904–14. https://doi.org/10.1182/blood-2011-06-361691. e-pub ahead of print 2011/12/31; blood-2011-06-361691[pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wolff NC, Ilaria RL Jr. Establishment of a murine model for therapy-treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood. 2001;98:2808–16.

    Article  CAS  Google Scholar 

  29. Wolff NC, Veach DR, Tong WP, Bornmann WG, Clarkson B, Ilaria RL Jr. PD166326, a novel tyrosine kinase inhibitor, has greater antileukemic activity than imatinib mesylate in a murine model of chronic myeloid leukemia. Blood. 2005;105:3995–4003. https://doi.org/10.1182/blood-2004-09-3534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wendel HG, de Stanchina E, Cepero E, Ray S, Emig M, Fridman JS, et al. Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc Natl Acad Sci U.S.A. 2006;103:7444–9. https://doi.org/10.1073/pnas.0602402103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu Y, Swerdlow S, Duffy TM, Weinmann R, Lee FY, Li S. Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc Natl Acad Sci U.S.A. 2006;103:16870–5.

    Article  CAS  Google Scholar 

  32. Walz C, Ahmed W, Lazarides K, Betancur M, Patel N, Hennighausen L, et al. Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2(V617F) in mice. Blood. 2012;119:3550–60. https://doi.org/10.1182/blood-2011-12-397554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hsieh MY, Van Etten RA. IKK-dependent activation of NF-kappaB contributes to myeloid and lymphoid leukemogenesis by BCR-ABL1. Blood. 2014;123:2401–11. https://doi.org/10.1182/blood-2014-01-547943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuan R, Tsaih SW, Petkova SB, Marin de Evsikova C, Xing S, Marion MA, et al. Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell. 2009;8:277–87. https://doi.org/10.1111/j.1474-9726.2009.00478.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brayton C. Chapter 25 — Spontaneous Diseases in Commonly Used Mouse Strains. In: Fox JG, Davisson MT, Quimby FW, Barthold SW, Newcomer CE, Smith AL, editors. The Mouse in Biomedical Research. 2nd ed. Burlington: Academic Press; 2007. p. 623–717.

    Chapter  Google Scholar 

  36. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3:330–8. https://doi.org/10.1038/nrc1074.

    Article  CAS  PubMed  Google Scholar 

  37. Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL. The aging of hematopoietic stem cells. Nat Med. 1996;2:1011–6.

    Article  CAS  Google Scholar 

  38. Koptyra M, Falinski R, Nowicki MO, Stoklosa T, Majsterek I, Nieborowska-Skorska M, et al. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood. 2006;108:319–27.

    Article  CAS  Google Scholar 

  39. Wang Z, Chen CC, Chen WY. CD150- side population defines leukemia stem cells in a BALB/c mouse model of CML and is depleted by genetic loss of SIRT1. Stem Cells. 2015;33:3437–51. https://doi.org/10.1002/stem.2218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Etten RA. Studying the pathogenesis of BCR-ABL+ leukemia in mice. Oncogene. 2002;21:8643–51. https://doi.org/10.1038/sj.onc.1206091.

    Article  PubMed  Google Scholar 

  41. de Haan G, Lazare SS. Aging of hematopoietic stem cells. Blood. 2018;131:479–87. https://doi.org/10.1182/blood-2017-06-746412.

    Article  CAS  PubMed  Google Scholar 

  42. Ho YH, Mendez-Ferrer S. Microenvironmental contributions to hematopoietic stem cell aging. Haematologica. 2020;105:38–46. https://doi.org/10.3324/haematol.2018.211334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ko PS, Yu YB, Liu YC, Wu YT, Hung MH, Gau JP, et al. Moderate anemia at diagnosis is an independent prognostic marker of the EUTOS, Sokal, and Hasford scores for survival and treatment response in chronic-phase, chronic myeloid leukemia patients with frontline imatinib. Curr Med Res Opin. 2017;33:1737–44. https://doi.org/10.1080/03007995.2017.1356708.

    Article  CAS  PubMed  Google Scholar 

  44. Liu Z, Shi Y, Yan Z, He Z, Ding B, Tao S, et al. Impact of anemia on the outcomes of chronic phase chronic myeloid leukemia in TKI era. Hematology. 2020;25:181–5. https://doi.org/10.1080/16078454.2020.1765563.

    Article  CAS  PubMed  Google Scholar 

  45. Moura MS, Benevides TCL, Delamain MT, Duarte GO, Percout PO, Dias MA, et al. Evaluation of anemia after long-term treatment with imatinib in chronic myeloid leukemia patients in chronic phase. Hematol Transfus Cell Ther. 2019;41:329–34. https://doi.org/10.1016/j.htct.2019.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Oyekunle AA, Durosinmi MA, Bolarinwa RA, Owojuyigbe T, Salawu L, Akinola NO. Chronic myeloid leukemia in nigerian patients: anemia is an independent predictor of overall survival. Clin Med Insights: Blood Disord. 2016;9:9–13.

    Google Scholar 

  47. Hamamyh T, Yassin MA. Autoimmune hemolytic anemia in chronic myeloid leukemia. Pharmacology. 2020: 1–9. https://doi.org/10.1159/000507295.

  48. Duarte D, Hawkins ED, Lo Celso C. The interplay of leukemia cells and the bone marrow microenvironment. Blood. 2018;131:1507–11. https://doi.org/10.1182/blood-2017-12-784132.

    Article  CAS  PubMed  Google Scholar 

  49. Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest. 2010;120:2254–64.

    Article  CAS  Google Scholar 

  50. Wolach O, Stone RM. How I treat mixed-phenotype acute leukemia. Blood. 2015;125:2477–85. https://doi.org/10.1182/blood-2014-10-551465.

    Article  CAS  PubMed  Google Scholar 

  51. Alexander TB, Gu Z, Iacobucci I, Dickerson K, Choi JK, Xu B, et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature. 2018;562:373–9. https://doi.org/10.1038/s41586-018-0436-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, et al. Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol. 2001;70:881–6.

    CAS  PubMed  Google Scholar 

  53. Brubaker AL, Rendon JL, Ramirez L, Choudhry MA, Kovacs EJ. Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. J Immunol. 2013;190:1746–57. https://doi.org/10.4049/jimmunol.1201213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Florian MC, Dorr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M. et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell. 2012;10:520–30. https://doi.org/10.1016/j.stem.2012.04.007. e-pub ahead of print 2012/05/09; S1934-5909(12)00172-5 [ipi].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Helbling PM, Pineiro-Yanez E, Gerosa R, Boettcher S, Al-Shahrour F, Manz MG. et al. Global transcriptomic profiling of the bone marrow stromal microenvironment during postnatal development, aging, and inflammation. Cell Rep. 2019;29:3313–30. https://doi.org/10.1016/j.celrep.2019.11.004. e3314.

    Article  CAS  PubMed  Google Scholar 

  56. Dell RB, Holleran S, Ramakrishnan R. Sample size determination. ILAR J. 2002;43:207–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants UH2/3 CA213385 (co-sponsored by NIH National Cancer Institute and National Institute of Aging) and 3UH3CA213385-05S1 (sponsored by NIH Office of the Director), as well as institutional grants from the City of Hope Center for Cancer and Aging, and Norton Basic Research Fund to WYC. Research reported in this publication included work performed in the Animal Resources Center and Flow Cytometry Core supported by the National Cancer Institute under the award P30CA33572. The content is solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenYong Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, T., Zhang, C., Wang, Z. et al. An aging mouse model of human chronic myeloid leukemia. Oncogene 40, 3152–3163 (2021). https://doi.org/10.1038/s41388-021-01770-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01770-0

This article is cited by

Search

Quick links