Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CSDE1 attenuates microRNA-mediated silencing of PMEPA1 in melanoma

Abstract

MicroRNAs and RNA-binding proteins (RBPs) primarily target the 3′ UTR of mRNAs to control their translation and stability. However, their co-regulatory effects on specific mRNAs in physiology and disease are yet to be fully explored. CSDE1 is an RBP that promotes metastasis in melanoma and mechanisms underlying its oncogenic activities need to be completely defined. Here we report that CSDE1 interacts with specific miRNA-induced silencing complexes (miRISC) in melanoma. We find an association of CSDE1 with AGO2, the essential component of miRISC, which is facilitated by target mRNAs and depends on the first cold shock domain of CSDE1. Both CSDE1 and AGO2 bind to 3′ UTR of PMEPA1. CSDE1 counters AGO2 binding, leading to an increase of PMEPA1 expression. We also identify a miRNA, miR-129-5p, that represses PMEPA1 expression in melanoma. Collectively, our results show that PMEPA1 promotes tumorigenic traits and that CSDE1 along with miR-129-5p/AGO2 miRISC act antagonistically to fine-tune PMEPA1 expression toward the progression of melanoma.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Target mRNA facilitates the interaction between CSDE1 and AGO2 in melanoma.
Fig. 2: CSDE1 and AGO2 bind common targets on the 3′ UTR.
Fig. 3: CSDE1 promotes the expression of PMEPA1 in melanoma.
Fig. 4: The miRNA pathway controls PMEPA1 expression in melanoma.
Fig. 5: CSDE1 and AGO2 compete to bind PMEPA1 mRNA.
Fig. 6: CSDE1 interaction with AGO2 regulates PMEPA1 expression.
Fig. 7: PMEPA1 promotes oncogenesis in melanoma.

References

  1. 1.

    Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol. 2011;223:102–15.

    CAS  Article  Google Scholar 

  3. 3.

    Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Schadendorf D, Fisher DE, Garbe C, Gershenwald JE, Grob JJ, Halpern A, et al. Melanoma. Nat Rev Dis Prim. 2015;1:15003.

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Xu Y, Brenn T, Brown ERS, Doherty V, Melton DW. Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br J Cancer. 2012;106:553–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Aksenenko M, Palkina N, Komina A, Tashireva L, Ruksha T. Differences in microRNA expression between melanoma and healthy adjacent skin. BMC Dermatol. 2019;19:1.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Qian H, Yang C, Yang Y. MicroRNA-26a inhibits the growth and invasiveness of malignant melanoma and directly targets on MITF gene. Cell Death Disco. 2017;3:17028.

    CAS  Article  Google Scholar 

  8. 8.

    Fattore L, Ruggiero CF, Pisanu ME, Liguoro D, Cerri A, Costantini S, et al. Reprogramming miRNAs global expression orchestrates development of drug resistance in BRAF mutated melanoma. Cell Death Differ. 2019;26:1267–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20:21–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16:1–13.

    Article  CAS  Google Scholar 

  11. 11.

    Quévillon Huberdeau M, Simard MJ. A guide to microRNA-mediated gene silencing. FEBS J. 2019;286:642–52.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  12. 12.

    Nam JW, Rissland OS, Koppstein D, Abreu-Goodger C, Jan CH, Agarwal V, et al. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol Cell. 2014;53:1031–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    van Kouwenhove M, Kedde M, Agami R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer. 2011;11:644–56.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  14. 14.

    Pereira B, Billaud M, Almeida R. RNA-binding proteins in cancer: old players and new actors. Trends Cancer. 2017;3:506–28.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Keene JD. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet. 2007;8:533–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Kishore S, Luber S, Zavolan M. Deciphering the role of RNA-binding proteins in the post-transcriptional control of gene expression. Brief Funct Genomics. 2010;9:391–404.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Jiang P, Coller H. Functional interactions between micro-RNAs and RNA binding proteins. Microrna. 2012;1:70–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Iadevaia V, Gerber AP. Combinatorial control of mRNA fates by RNA-binding proteins and non-coding RNAs. Biomol Ther. 2015;5:2207–22.

    CAS  Google Scholar 

  19. 19.

    Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell. 2006;125:1111–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Ahuja D, Goyal A, Ray PS. Interplay between RNA-binding protein HuR and microRNA-125b regulates p53 mRNA translation in response to genotoxic stress. RNA Biol. 2016;13:1152–65.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev. 2009;23:1743–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Kedde M, van Kouwenhove M, Zwart W, Oude Vrielink JA, Elkon R, Agami R. Pumilio-induced RNA structure switch in p27-3’ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol. 2010;12:1014–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Kundu P, Fabian MR, Sonenberg N, Bhattacharyya SN, Filipowicz W. HuR protein attenuates miRNA-mediated repression by promoting miRISC dissociation from the target RNA. Nucleic Acids Res. 2012;40:5088–100.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Li Y, Estep JA, Karginov FV. Transcriptome wide Identification and Validation of Interactions between the miRNA Machinery and HuR on mRNA Targets. J Mol Biol. 2017;430:285–96.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. 25.

    Sternburg EL, Estep JA, Nguyen DK, Li Y, Karginov FV. Antagonistic and co-operative AGO2-PUM interactions in regulating mRNAs. Sci Rep. 2018;8:15316.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Kelly TJ, Suzuki HI, Zamudio JR, Suzuki M, Sharp PA. Sequestration of microRNA-mediated target repression by the Ago2-associated RNA binding protein FAM120A. RNA. 2019;25:1291–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Mihailovich M, Militti C, Gabaldón T, Gebauer F. Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression. BioEssays. 2010;32:109–18.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Hollmann NM, Jagtap PKA, Masiewicz P, Guitart T, Simon B, Provaznik J, et al. Pseudo-RNA-binding domains mediate RNA structure specificity in upstream of N-Ras. Cell Rep. 2020;32:107930.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Abaza I, Coll O, Patalano S, Gebauer F. Drosophila UNR is required for translational repression of male-specific lethal 2 mRNA during regulation of X-chromosome dosage compensation. Genes Dev. 2006;20:380–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Duncan K, Grskovic M, Strein C, Beckmann K, Niggeweg R, Abaza I, et al. Sex-lethal imparts a sex-specific function to UNR by recruiting it to the msl-2 mRNA 3′ UTR: translational repression for dosage compensation. Genes Dev. 2006;20:368–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Dormoy-Raclet V, Markovits J, Jacquemin-Sablon A, Jacquemin-Sablon H. Regulation of Unr expression by 5′- and 3′-untranslated regions of its mRNA through modulation of stability and IRES mediated translation. RNA Biol. 2005;2:e27–35.

    PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Schepens B, Tinton SA, Bruynooghe Y, Parthoens E, Haegman M, Beyaert R, et al. A role for hnRNP C1/C2 and Unr in internal initiation of translation during mitosis. EMBO J. 2007;26:158–69.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Mitchell SA, Brown EC, Coldwell MJ, Jackson RJ, Willis AE. Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras. Mol Cell Biol. 2001;21:3364–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Cornelis S, Tinton SA, Schepens B, Bruynooghe Y, Beyaert R. UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein. Nucleic Acids Res. 2005;33:3095–108.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Dinur M, Kilav R, Sela-Brown A, Jacquemin-Sablon H, Naveh-Many T. In vitro evidence that upstream of N-ras participates in the regulation of parathyroid hormone messenger ribonucleic acid stability. Mol Endocrinol. 2006;20:1652–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Lee HJ, Bartsch D, Xiao C, Guerrero S, Ahuja G, Schindler C, et al. A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nat Commun. 2017;8:1456.

    Article  CAS  Google Scholar 

  37. 37.

    Elatmani H, Dormoy-Raclet V, Dubus P, Dautry F, Chazaud C, Jacquemin-Sablon H. The RNA-binding protein Unr prevents mouse embryonic stem cells differentiation toward the primitive endoderm lineage. Stem Cell Rep. 2011;29:1504–16.

    CAS  Google Scholar 

  38. 38.

    Kakumani PK, Harvey LM, Houle F, Guitart T, Gebauer F, Simard MJ. CSDE1 controls gene expression through the miRNA-mediated decay machinery. Life Sci Alliance. 2020;3:e201900632.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Wurth L, Papasaikas P, Olmeda D, Bley N, Calvo GT, Guerrero S, et al. UNR/CSDE1 drives a post-transcriptional program to promote melanoma invasion and metastasis. Cancer Cell. 2016;30:694–707.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Fournier PG, Juárez P, Jiang G, Clines GA, Niewolna M, Kim HS, et al. The TGF-β signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell. 2015;27:809–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Amalia R, Abdelaziz M, Puteri MU, Hwang J, Anwar F, Watanabe Y, et al. TMEPAI/PMEPA1 inhibits Wnt signaling by regulating β-catenin stability and nuclear accumulation in triple negative breast cancer cells. Cell Signal. 2019;59:24–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Abdelaziz M, Watanabe Y, Kato M. PMEPA1/TMEPAI knockout impairs tumour growth and lung metastasis in MDA-MB-231 cells without changing monolayer culture cell growth. J Biochem. 2019;165:411–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Vo Nguyen TT, Watanabe Y, Shiba A, Noguchi M, Itoh S, Kato M. TMEPAI/PMEPA1 enhances tumorigenic activities in lung cancer cells. Cancer Sci. 2014;105:334–41.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Connerty P, Ahadi A, Hutvagner G. RNA binding proteins in the miRNA pathway. Int J Mol Sci. 2015;17:E31.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  45. 45.

    Jannot G, Vasquez-Rifo A, Simard MJ. Argonaute pull-down and RISC analysis using 2’-O-methylated oligonucleotides affinity matrices. Methods Mol Biol. 2011;725:233–49.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Golden RJ, Chen B, Li T, Braun J, Manjunath H, Chen X, et al. An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature. 2017;542:197–202.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Quévillon Huberdeau M, Zeitler DM, Hauptmann J, Bruckmann A, Fressigné L, Danner J, et al. Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing in vivo. EMBO J. 2017;36:2088–106.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. 48.

    Karginov FV, Hannon GJ. Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. Genes Dev. 2013;27:1624–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Feng S, Zhu X, Fan B, Xie D, Li T, Zhang X. miR‑19a‑3p targets PMEPA1 and induces prostate cancer cell proliferation, migration and invasion. Mol Med Rep. 2016;13:4030–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Agarwal V, Bell GW, Nam J, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005.

    Article  Google Scholar 

  51. 51.

    Abaza I, Gebauer F. Functional domains of Drosophila UNR in translational control. RNA. 2008;14:482–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Kamenska A, Simpson C, Vindry C, Broomhead H, Bénard M, Ernoult-Lange M, et al. The DDX6-4E-T interaction mediates translational repression and P-body assembly. Nucleic Acids Res. 2016;44:6318–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Ji J, Ding K, Luo T, Xu R, Zhang X, Huang B, et al. PMEPA1 isoform a drives progression of glioblastoma by promoting protein degradation of the Hippo pathway kinase LATS1. Oncogene. 2020;39:1125–39.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Militti C, Maenner S, Becker PB, Gebauer F. UNR facilitates the interaction of MLE with the lncRNA roX2 during Drosophila dosage compensation. Nat Commun. 2014;5:4762.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Chang TC, Yamashita A, Chen CY, Yamashita Y, Zhu W, Durdan S, et al. UNR, a new partner of poly(A)-binding protein, plays a key role in translationally coupled mRNA turnover mediated by the c-fos major coding-region determinant. Genes Dev. 2004;18:2010–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Kaye JA, Rose NC, Goldsworthy B, Goga A, L’Etoile ND. A 3′UTR pumilio-binding element directs translational activation in olfactory sensory neurons. Neuron. 2009;61:57–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Friend K, Campbell ZT, Cooke A, Kroll-Conner P, Wickens MP, Kimble J. A conserved PUF-Ago-eEF1A complex attenuates translation elongation. Nat Struct Mol Biol. 2012;19:176–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Bohn JA, Van Etten JL, Schagat TL, Bowman BM, McEachin RC, Freddolino PL, et al. Identification of diverse target RNAs that are functionally regulated by human Pumilio proteins. Nucleic Acids Res. 2018;46:362–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR, et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell. 2017;31:181–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Martinez-Useros J, Garcia-Carbonero N, Li W, Fernandez-Aceñero MJ, Cristobal I, Rincon R, et al. UNR/ CSDE1 expression is critical to maintain invasive phenotype of colorectal cancer through regulation of c-MYC and epithelial-to-mesenchymal transition. J Clin Med. 2019;8:560.

    CAS  PubMed Central  Article  Google Scholar 

  61. 61.

    Young LE, Moore AE, Sokol L, Meisner-Kober N, Dixon DA. The mRNA stability factor HuR inhibits microRNA-16 targeting of COX-2. Mol Cancer Res. 2012;10:167–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Bottini S, Hamouda-Tekaya N, Mategot R, Zaragosi LE, Audebert S, Pisano S. et al. Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq. Nat Commun. 2017;8:1189

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. 63.

    Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, et al. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell. 2013;152:82–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K, le Sage C, et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell. 2017;131:1273–86.

    Article  CAS  Google Scholar 

  65. 65.

    Liu Q, Jiang J, Fu Y, Liu T, Yu Y, Zhang X. MiR-129-5p functions as a tumor suppressor in gastric cancer progression through targeting ADAM9. Biomed Pharmacother. 2018;105:420–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Wang S, Chen Y, Yu X, Lu Y, Wang H, Wu F, et al. miR-129-5p attenuates cell proliferation and epithelial mesenchymal transition via HMGB1 in gastric cancer. Pathol Res Pr. 2019;215:676–82.

    CAS  Article  Google Scholar 

  67. 67.

    Qiu Z, Wang X, Shi Y, Da M. miR-129-5p suppresses proliferation, migration, and induces apoptosis in pancreatic cancer cells by targeting PBX3. Acta Biochim Biophys Sin (Shanghai). 2019;51:997–1007.

    CAS  Article  Google Scholar 

  68. 68.

    Li Z, Lu J, Zeng G, Pang J, Zheng X, Feng J, et al. MiR-129-5p inhibits liver cancer growth by targeting calcium calmodulin-dependent protein kinase IV (CAMK4). Cell Death Dis. 2019;10:789.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Wan P, Bai X, Yang C, He T, Luo L, Wang Y, et al. miR-129-5p inhibits proliferation, migration, and invasion in rectal adenocarcinoma cells through targeting E2F7. J Cell Physiol. 2020;235:5689–701.

  70. 70.

    Li G, Xie J, Wang J. Tumor suppressor function of miR-129-5p in lung cancer. Oncol Lett. 2019;17:5777–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Ma L, Chen X, Li C, Cheng R, Gao Z, Meng X, et al. miR-129-5p and -3p co-target WWP1 to suppress gastric cancer proliferation and migration. J Cell Biochem. 2018;120:7527–38.

    Article  CAS  Google Scholar 

  72. 72.

    Goyer B, Pereira U, Magne B, Larouche D, Kearns‐Turcotte S, Rochette PJ, et al. Impact of ultraviolet radiation on dermal and epidermal DNA damage in a human pigmented bilayered skin substitute. J Tissue Eng Regen Med. 2019;13:2300–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of our laboratory for helpful discussions and the Bioinformatics Unit at CRG Barcelona for their services in analyzing the CLiP-Seq data.

Funding

The Canadian Institutes of Health Research (CIHR) supported this work. PKK and LMH are recipients of scholarship from Fonds de Recherche du Québec-Santé (FRQ-S). MJS is a Research Chair from FRQ-S. LG was supported by the CIHR (FDN-143213). FG was supported by grants from the Spanish Ministry of Science and Innovation (MICINN, PGC2018-099697-B-I00), “la Caixa” Foundation (ID:100010434) under the agreement LCF/PR/HR17/52150016, the Catalan Government (2017SGR534) and the Center of Excellence Severo Ochoa.

Author information

Affiliations

Authors

Contributions

PKK designed and performed most of the experiments. TG and FH performed cancer assays, while LMH helped in the preparation of different reagents. TG also generated data for Fig. 3D, E. MJS and FG supervised the work. BG isolated, cultured, and prepared proteins from melanocytes used in Fig. 3E and was supervised by LG. PKK and MJS wrote the manuscript with the help of FG.

Corresponding authors

Correspondence to Pavan Kumar Kakumani or Martin J. Simard.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kakumani, P.K., Guitart, T., Houle, F. et al. CSDE1 attenuates microRNA-mediated silencing of PMEPA1 in melanoma. Oncogene (2021). https://doi.org/10.1038/s41388-021-01767-9

Download citation

Search

Quick links