Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

METTL3-mediated m6A methylation of SPHK2 promotes gastric cancer progression by targeting KLF2


N6-methyladenosine (m6A) RNA methylation is profoundly involved in epigenetic regulation, especially for carcinogenesis and tumor progression. Mounting evidence suggests that methyltransferase METTL3 regulates malignant behaviors of gastric cancer (GC). However, the clinical significance and biological implication of SPHK2 and its related m6A modification in GC remain unclear. In this study, quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry were utilized to detect the expression profiles and prognostic significance of SPHK2 in GC. Here, we showed that increased SPHK2 was signified a poor prognosis of GC patients. Phosphorylation and ubiquitination assays were used to investigate the possible mechanisms of SPHK2-mediated KLF2 expression. SPHK2 can promote the phosphorylation of KLF2, which triggers the ubiquitination and degradation of KLF2 protein in GC. Methylated RNA immunoprecipitation (MeRIP) was performed to uncover the m6A modification of SPHK2 mRNA. METTL3 promotes translation of SPHK2 mRNA via an m6A-YTHDF1-dependent manner. Functionally, SPHK2 facilitates GC cell proliferation, migration and invasion by inhibiting KLF2 expression. SPHK2/KLF2 regulates the cell proliferation, migration, and invasion induced by METTL3 in GC. Overall, our findings reveal that METTL3-mediated m6A modification of SPHK2 contributes to GC progression, which extends the understanding of the importance m6A methylation in GC and represents a potential target for GC therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Upregulated SPHK2 is associated with poor prognosis of GC patients.
Fig. 2: Effects of SPHK2 on the proliferation, migration and invasion of GC cells.
Fig. 3: SPHK2 regulates the degradation of KLF2 in GC cells.
Fig. 4: SPHK2-mediated KLF2 phosphorylation triggers KLF2 destruction in GC cells.
Fig. 5: METTL3 promotes SPHK2 expression by an m6A-YTHDF1-dependent manner in GC cells.
Fig. 6: METTL3/SPHK2/KLF2 axis promotes GC cell proliferation, migration, and invasion.


  1. 1.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  2. 2.

    Costamagna G, Cesaro P. Early gastric cancer: detection and endoscopic treatment. Ann Ital Chir. 2012;83:183–91.

    PubMed  Google Scholar 

  3. 3.

    Wei J, Wu ND, Liu BR. Regional but fatal: Intraperitoneal metastasis in gastric cancer. World J Gastroenterol. 2016;22:7478–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Matsubara J, Shimada Y, Kato K, Nagai Y, Iwasa S, Nakajima TE, et al. Phase II study of bolus 5-fluorouracil and leucovorin combined with weekly paclitaxel as first-line therapy for advanced gastric cancer. Oncology. 2011;81:291–7.

    CAS  PubMed  Google Scholar 

  5. 5.

    Bornschein J, Leja M, Kupcinskas J, Link A, Weaver J, Rugge M, et al. Molecular diagnostics in gastric cancer. Front Biosci. 2014;19:312–38.

    Google Scholar 

  6. 6.

    Shimada H, Noie T, Ohashi M, Oba K, Takahashi Y. Clinical significance of serum tumor markers for gastric cancer: a systematic review of literature by the Task Force of the Japanese Gastric Cancer Association. Gastric Cancer. 2014;17:26–33.

    CAS  PubMed  Google Scholar 

  7. 7.

    Maceyka M, Harikumar KB, Milstien S, Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 2012;22:50–60.

    CAS  PubMed  Google Scholar 

  8. 8.

    Pham DH, Powell JA, Gliddon BL, Moretti PA, Tsykin A, Van der Hoek M, et al. Enhanced expression of transferrin receptor 1 contributes to oncogenic signalling by sphingosine kinase 1. Oncogene. 2014;33:5559–68.

    CAS  PubMed  Google Scholar 

  9. 9.

    Igarashi N, Okada T, Hayashi S, Fujita T, Jahangeer S, Nakamura S. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem. 2003;278:46832–9.

    CAS  PubMed  Google Scholar 

  10. 10.

    Liu W, Ning J, Li C, Hu J, Meng Q, Lu H, et al. Overexpression of Sphk2 is associated with gefitinib resistance in non-small cell lung cancer. Tumour Biol. 2016;37:6331–6.

    CAS  PubMed  Google Scholar 

  11. 11.

    Liang J, Zhang X, He S, Miao Y, Wu N, Li J, et al. Sphk2 RNAi nanoparticles suppress tumor growth via downregulating cancer cell derived exosomal microRNA. J Control Release. 2018;286:348–57.

    CAS  PubMed  Google Scholar 

  12. 12.

    Hasanifard L, Sheervalilou R, Majidinia M, Yousefi B. New insights into the roles and regulation of SphK2 as a therapeutic target in cancer chemoresistance. J Cell Physiol. 2019;234:8162–81.

    CAS  PubMed  Google Scholar 

  13. 13.

    Shi WN, Cui SX, Song ZY, Wang SQ, Sun SY, Yu XF, et al. Overexpression of SphK2 contributes to ATRA resistance in colon cancer through rapid degradation of cytoplasmic RXRalpha by K48/K63-linked polyubiquitination. Oncotarget. 2017;8:39605–17.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Dong J, Geng J, Tan W. MiR-363-3p suppresses tumor growth and metastasis of colorectal cancer via targeting SphK2. Biomed Pharmacother. 2018;105:922–31.

    CAS  PubMed  Google Scholar 

  15. 15.

    Xiao G, Wang Q, Li B, Wu X, Liao H, Ren Y, et al. MicroRNA-338-3p suppresses proliferation of human liver cancer cells by targeting SphK2. Oncol Res. 2018;26:1183–9.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Qiu W, Yang Z, Fan Y, Zheng Q. MicroRNA-613 inhibits cell growth, migration and invasion of papillary thyroid carcinoma by regulating SphK2. Oncotarget. 2016;7:39907–15.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Xue KC, Hu DD, Zhao L, Li N, Shen HY. MiR-577 inhibits papillary thyroid carcinoma cell proliferation, migration and invasion by targeting SphK2. Eur Rev Med Pharmacol Sci. 2017;21:3794–800.

    PubMed  Google Scholar 

  18. 18.

    Chen Y, Deng X, Chen W, Shi P, Lian M, Wang H, et al. Silencing of microRNA-708 promotes cell growth and epithelial-to-mesenchymal transition by activating the SPHK2/AKT/beta-catenin pathway in glioma. Cell Death Dis. 2019;10:448.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Bialkowska AB, Yang VW, Mallipattu SK. Kruppel-like factors in mammalian stem cells and development. Development. 2017;144:737–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Rane MJ, Zhao Y, Cai L. Krupsilonppel-like factors (KLFs) in renal physiology and disease. EBioMedicine. 2019;40:743–50.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lian Y, Yang J, Lian Y, Xiao C, Hu X, Xu H. DUXAP8, a pseudogene derived lncRNA, promotes growth of pancreatic carcinoma cells by epigenetically silencing CDKN1A and KLF2. Cancer Commun. 2018;38:64.

    Google Scholar 

  22. 22.

    Wang B, Liu M, Song Y, Li C, Zhang S, Ma L. KLF2 inhibits the migration and invasion of prostate cancer cells by downregulating MMP2. Am J Mens Health. 2019;13:1557988318816907.

    PubMed  Google Scholar 

  23. 23.

    Wang L, Ye TY, Wu H, Chen SY, Weng JR, Xi XW. LINC00702 accelerates the progression of ovarian cancer through interacting with EZH2 to inhibit the transcription of KLF2. Eur Rev Med Pharmacol Sci. 2019;23:201–8.

    CAS  PubMed  Google Scholar 

  24. 24.

    Wang Q, He Y, Kan W, Li F, Ji X, Wu X, et al. microRNA-32-5p targets KLF2 to promote gastric cancer by activating PI3K/AKT signaling pathway. Am J Transl Res. 2019;11:4895–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Yuan XH, Li J, Cao Y, Jie ZG, Zeng YF. Long non-coding RNA AFAP1-AS1 promotes proliferation and migration of gastric cancer by downregulating KLF2. Eur Rev Med Pharmacol Sci. 2020;24:673–80.

    PubMed  Google Scholar 

  26. 26.

    Li X, Li Z, Liu Z, Xiao J, Yu S, Song Y. Long non-coding RNA DLEU1 predicts poor prognosis of gastric cancer and contributes to cell proliferation by epigenetically suppressing KLF2. Cancer Gene Ther. 2018;25:58–67.

    CAS  PubMed  Google Scholar 

  27. 27.

    Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen J. et al. METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 2019;69:1193–205.

    PubMed  Google Scholar 

  28. 28.

    Yue B, Song C, Yang L, Cui R, Cheng X, Zhang Z, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer. 2019;18:142.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lin S, Liu J, Jiang W, Wang P, Sun C, Wang X, et al. METTL3 promotes the proliferation and mobility of gastric cancer cells. Open Med. 2019;14:25–31.

    CAS  Google Scholar 

  30. 30.

    Zhang X, Srinivasan SV, Lingrel JB. WWP1-dependent ubiquitination and degradation of the lung Kruppel-like factor, KLF2. Biochem Biophys Res Commun. 2004;316:139–48.

    CAS  PubMed  Google Scholar 

  31. 31.

    Xie P, Tang Y, Shen S, Wang Y, Xing G, Yin Y, et al. Smurf1 ubiquitin ligase targets Kruppel-like factor KLF2 for ubiquitination and degradation in human lung cancer H1299 cells. Biochem Biophys Res Commun. 2011;407:254–9.

    CAS  PubMed  Google Scholar 

  32. 32.

    Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015;519:482–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161:1388–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    He H, Wu W, Sun Z, Chai L. MiR-4429 prevented gastric cancer progression through targeting METTL3 to inhibit m(6)A-caused stabilization of SEC62. Biochem Biophys Res Commun. 2019;517:581–7.

    CAS  PubMed  Google Scholar 

  35. 35.

    Liu H, Zhang CX, Ma Y, He HW, Wang JP, Shao RG. SphK1 inhibitor SKI II inhibits the proliferation of human hepatoma HepG2 cells via the Wnt5A/beta-catenin signaling pathway. Life Sci. 2016;151:23–9.

    CAS  PubMed  Google Scholar 

  36. 36.

    Marfe G, Mirone G, Shukla A, Di Stefano C. Sphingosine kinases signalling in carcinogenesis. Mini Rev Med Chem. 2015;15:300–14.

    CAS  PubMed  Google Scholar 

  37. 37.

    Liu H, Toman RE, Goparaju SK, Maceyka M, Nava VE, Sankala H, et al. Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem. 2003;278:40330–6.

    CAS  PubMed  Google Scholar 

  38. 38.

    Maceyka M, Sankala H, Hait NC, Le Stunff H, Liu H, Toman R, et al. SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem. 2005;280:37118–29.

    CAS  PubMed  Google Scholar 

  39. 39.

    Chu JH, Gao ZH, Qu XJ. Down-regulation of sphingosine kinase 2 (SphK2) increases the effects of all-trans-retinoic acid (ATRA) on colon cancer cells. Biomed Pharmacother. 2014;68:1089–97.

    CAS  PubMed  Google Scholar 

  40. 40.

    Sun E, Zhang W, Wang L, Wang A, Ma C, Lei M, et al. Down-regulation of Sphk2 suppresses bladder cancer progression. Tumour Biol. 2016;37:473–8.

    CAS  PubMed  Google Scholar 

  41. 41.

    Xun C, Chen MB, Qi L, Tie-Ning Z, Peng X, Ning L, et al. Targeting sphingosine kinase 2 (SphK2) by ABC294640 inhibits colorectal cancer cell growth in vitro and in vivo. J Exp Clin Cancer Res. 2015;34:94.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Britten CD, Garrett-Mayer E, Chin SH, Shirai K, Ogretmen B, Bentz TA, et al. A phase I study of ABC294640, a first-in-class sphingosine kinase-2 inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2017;23:4642–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Kao SH, Wang WL, Chen CY, Chang YL, Wu YY, Wang YT, et al. GSK3beta controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene. 2017;36:5916.

    CAS  PubMed  Google Scholar 

  44. 44.

    Yang DD, Chen ZH, Yu K, Lu JH, Wu QN, Wang Y, et al. METTL3 promotes the progression of gastric cancer via targeting the MYC pathway. Front Oncol. 2020;10:115.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Huo FC, Pan YJ, Li TT, Mou J, Pei DS. PAK5 promotes the migration and invasion of cervical cancer cells by phosphorylating SATB1. Cell Death Differ. 2019;26:994–1006.

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jie Mou.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huo, FC., Zhu, ZM., Zhu, WT. et al. METTL3-mediated m6A methylation of SPHK2 promotes gastric cancer progression by targeting KLF2. Oncogene 40, 2968–2981 (2021).

Download citation


Quick links