Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LIMK1 nuclear translocation promotes hepatocellular carcinoma progression by increasing p-ERK nuclear shuttling and by activating c-Myc signalling upon EGF stimulation

Abstract

LIM kinase 1 (LIMK1) is a serine/threonine and tyrosine kinase that is predominantly located in the cytoplasm. In our study, nuclear translocation of LIMK1 in clinical hepatocellular carcinoma (HCC) samples was demonstrated for the first time, especially in samples from those with intravascular tumour thrombus. LIMK1 was overexpressed in HCC tissues, and nuclear LIMK1 expression was associated with poor prognosis in HCC patients. Although the effects of cytoplasmic LIMK1 on cofilin phosphorylation and actin filament dynamics have been well studied, the function of nuclear LIMK1 is still unclear. Gain- and loss-of-function experiments were performed both in vitro and in vivo and demonstrated a correlation between nuclear LIMK1 and the enhanced aggressive phenotype of HCC. EGF could drive the nuclear translocation of LIMK1 by activating the interaction of p-ERK and LIMK1 and facilitating their roles in nuclear shuttling. Moreover, nuclear LIMK1 could directly bind to the promoter region of c-Myc and stimulate c-Myc transcription. Although the EGFR monoclonal antibody cetuximab has a poor therapeutic effect on advanced HCC patients, in vivo animal study showed that cetuximab achieved a significant inhibitory effect on the progression of nuclear LIMK1-overexpressing HCC cells. In addition, recent data have demonstrated the potential of cetuximab in combination therapy for HCC patients with LIMK1 nuclear translocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nuclear LIMK1 overexpression is associated with the poor prognosis of HCC.
Fig. 2: Nuclear LIMK1 contributes to the aggressive phenotype of HCC cells in vitro.
Fig. 3: LIMK1 and p-ERK interact to facilitate their nuclear translocation.
Fig. 4: Nuclear LIMK1 transcriptionally activates the expression of c-Myc.
Fig. 5: Cetuximab suppresses tumour progression by decreasing the nuclear translocation of LIMK1.
Fig. 6: The schematic diagram demonstrates the mechanism underlying LIMK1 nuclear translocation and the functional mechanism of nuclear LIMK1.

Similar content being viewed by others

References

  1. Buonaguro L, Petrizzo A, Tagliamonte M, Tornesello ML, Buonaguro FM. Challenges in cancer vaccine development for hepatocellular carcinoma. J Hepatol. 2013;59:897–903.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907–17.

    Article  PubMed  Google Scholar 

  4. Ding X, He M, Chan A, Song QX, Sze SC, Chen H, et al. Genomic and epigenomic features of primary and recurrent hepatocellular carcinomas. Gastroenterology. 2020;157:1630–45.

    Article  Google Scholar 

  5. Kim E, Kim D, Lee J-S, Yoe J, Park J, Kim C-J, et al. Capicua suppresses hepatocellular carcinoma progression by controlling the ETV4-MMP1 axis. Hepatology. 2018;67:2287–301.

    Article  CAS  PubMed  Google Scholar 

  6. Craig AJ, von Felden J, Garcia-Lezana T, Sarcognato S, Villanueva A. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020;17:139–52.

    Article  PubMed  Google Scholar 

  7. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589–604.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15:599–616.

    Article  PubMed  Google Scholar 

  9. Nunoue K, Ohashi K, Okano I, Mizuno K. LIMK-1 and LIMK-2, two members of a LIM motif-containing protein kinase family. Oncogene. 1995;11:701–10.

    CAS  PubMed  Google Scholar 

  10. Stanyon CA, Bernard O. LIM-kinase1. Int J Biochem Cell Biol. 1999;31:389–94.

    Article  CAS  PubMed  Google Scholar 

  11. Pröschel C, Blouin MJ, Gutowski NJ, Ludwig R, Noble M. Limk1 is predominantly expressed in neural tissues and phosphorylates serine, threonine and tyrosine residues in vitro. Oncogene. 1995;11:1271–81.

    PubMed  Google Scholar 

  12. Lagoutte E, Villeneuve C, Lafanechère L, Wells CM, Jones GE, Chavrier P, et al. LIMK regulates tumor-cell invasion and matrix degradation through tyrosine phosphorylation of MT1-MMP. Sci Rep. 2016;6:24925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Po’uha ST, Shum MS, Goebel A, Bernard O, Kavallaris M. LIM-kinase 2, a regulator of actin dynamics, is involved in mitotic spindle integrity and sensitivity to microtubule-destabilizing drugs. Oncogene. 2010;29:597–607.

    Article  PubMed  Google Scholar 

  14. McConnell BV, Koto K, Gutierrez-Hartmann A. Nuclear and cytoplasmic LIMK1 enhances human breast cancer progression. Mol Cancer. 2011;10:75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okano I, Hiraoka J, Otera H, Nunoue K, Ohashi K, Iwashita S, et al. Identification and characterization of a novel family of serine/threonine kinases containing two N-terminal LIM motifs. J Biol Chem. 1995;270:31321–30.

    Article  CAS  PubMed  Google Scholar 

  16. Kremer D, Heinen A, Jadasz J, Göttle P, Zimmermann K, Zickler P, et al. p57kip2 is dynamically regulated in experimental autoimmune encephalomyelitis and interferes with oligodendroglial maturation. Proc Natl Acad Sci USA. 2009;106:9087–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang N, Higuchi O, Mizuno K. Cytoplasmic localization of LIM-kinase 1 is directed by a short sequence within the PDZ domain. Exp Cell Res. 1998;241:242–52.

    Article  CAS  PubMed  Google Scholar 

  18. Yang N, Mizuno K. Nuclear export of LIM-kinase 1, mediated by two leucine-rich nuclear-export signals within the PDZ domain. Biochem J. 1999;338:793–8. Pt 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hamill S, Lou HJ, Turk BE, Boggon TJ. Structural basis for noncanonical substrate recognition of cofilin/ADF proteins by LIM kinases. Mol Cell. 2016;62:397–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature. 1998;393:809–12.

    Article  CAS  PubMed  Google Scholar 

  21. Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature. 1998;393:805–9.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao CC, Zhan MN, Liu WT, Jiao Y, Zhang YY, Lei Y, et al. Combined LIM kinase 1 and p21-Activated kinase 4 inhibitor treatment exhibits potent preclinical antitumor efficacy in breast cancer. Cancer Lett. 2020;493:120–7.

    Article  CAS  PubMed  Google Scholar 

  23. Huang JB, Wu YP, Lin YZ, Cai H, Chen SH, Sun XL et al. Up-regulation of LIMK1 expression in prostate cancer is correlated with poor pathological features, lymph node metastases and biochemical recurrence J Cell Mol Med. 2020; 24:4698–706.

  24. Liao Q, Li R, Zhou R, Pan Z, Xu L, Ding Y, et al. LIM kinase 1 interacts with myosin-9 and alpha-actinin-4 and promotes colorectal cancer progression. Br J Cancer. 2017;117:563–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sheng H, Guo YH, Cao DS, Li XJ, Zhao Y, Ding H, et al. MiR-429-5p attenuates the migration and invasion of malignant melanoma by targeting LIMK1. Eur Rev Med Pharmacol Sci. 2020;24:2625–31.

    CAS  PubMed  Google Scholar 

  26. Gao Q, Zhou R, Meng Y, Duan R, Wu L, Li R, et al. Long noncoding RNA CMPK2 promotes colorectal cancer progression by activating the FUBP3-c-Myc axis. Oncogene. 2020;39:3926–38.

    Article  CAS  PubMed  Google Scholar 

  27. Ohashi K, Hosoya T, Takahashi K, Hing H, Mizuno K. A drosophila homolog of LIM-kinase phosphorylates cofilin and induces actin cytoskeletal reorganization. Biochem Biophys Res Commun. 2000;276:1178–85.

    Article  CAS  PubMed  Google Scholar 

  28. Simhadri PK, Malwade R, Vanka R, Nakka VP, Kuppusamy G, Babu PP. Dysregulation of LIMK-1/cofilin-1 pathway: a possible basis for alteration of neuronal morphology in experimental cerebral malaria. Ann Neurol. 2017;82:429–43.

    Article  CAS  PubMed  Google Scholar 

  29. Abu Dayyeh BK, Yang M, Fuchs BC, Karl DL, Yamada S, Sninsky JJ, et al. A functional polymorphism in the epidermal growth factor gene is associated with risk for hepatocellular carcinoma. Gastroenterology. 2011;141:141–9.

    Article  CAS  PubMed  Google Scholar 

  30. Fuchs BC, Hoshida Y, Fujii T, Wei L, Yamada S, Lauwers GY, et al. Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology. 2014;59:1577–90.

    Article  CAS  PubMed  Google Scholar 

  31. Maik-Rachline G, Hacohen-Lev-Ran A, Seger R. Nuclear ERK: mechanism of translocation, substrates, and role in cancer. Int J Mol Sci. 2019;20:1194.

    Article  PubMed Central  Google Scholar 

  32. Lee SH, Hu LL, Gonzalez-Navajas J, Seo GS, Shen C, Brick J, et al. ERK activation drives intestinal tumorigenesis in Apc(min/+) mice. Nat Med. 2010;16:665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yao Z, Flash I, Raviv Z, Yung Y, Asscher Y, Pleban S, et al. Non-regulated and stimulated mechanisms cooperate in the nuclear accumulation of MEK1. Oncogene. 2001;20:7588–96.

    Article  CAS  PubMed  Google Scholar 

  34. Bagheri-Yarmand R, Mazumdar A, Sahin AA, Kumar R. LIM kinase 1 increases tumor metastasis of human breast cancer cells via regulation of the urokinase-type plasminogen activator system. Int J Cancer. 2006;118:2703–10.

    Article  CAS  PubMed  Google Scholar 

  35. Schofield AV, Gamell C, Bernard O. LIMK1/TPPP1/HDAC6 is a dual actin and microtubule regulatory complex that promotes drug resistance. Adv Biosci Biotechnol. 2014;05:353–62.

    Article  Google Scholar 

  36. Schofield AV, Gamell C, Bernard O. Tubulin polymerization promoting protein 1 (TPPP1) increases β-catenin expression through inhibition of HDAC6 activity in U2OS osteosarcoma cells. Biochem Biophys Res Commun. 2013;436:571–7.

    Article  CAS  PubMed  Google Scholar 

  37. Spitz F, Furlong EE. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet. 2012;13:613–26.

    Article  CAS  PubMed  Google Scholar 

  38. Ge L, Wang Z, Wang M, Kar S, Carr BI. Involvement of c-Myc in growth inhibition of Hep 3B human hepatoma cells by a vitamin K analog. J Hepatol. 2004;41:823–9.

    Article  CAS  PubMed  Google Scholar 

  39. Goldberg RM. Cetuximab. Nat Rev Drug Discov. 2005; Suppl S10–11.

  40. Bonomi PD, Gandara D, Hirsch FR, Kerr KM, Obasaju C, Paz-Ares L, et al. Predictive biomarkers for response to EGFR-directed monoclonal antibodies for advanced squamous cell lung cancer. Ann Oncol. 2018;29:1701–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Normanno N, Tejpar S, Morgillo F, De Luca A, Van Cutsem E, Ciardiello F. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol. 2009;6:519–27.

    Article  CAS  PubMed  Google Scholar 

  42. Maiello E, Giuliani F, Gebbia V, Piano A, Agueli R, Colucci G. Cetuximab: clinical results in colorectal cancer. Ann Oncol. 2007;18:vi8–10. Suppl 6.

    Article  PubMed  Google Scholar 

  43. Gebbia V, Giuliani F, Valori VM, Agueli R, Colucci G, Maiello E. Cetuximab in squamous cell head and neck carcinomas. Ann Oncol. 2007;18:vi5–7. Suppl 6.

    Article  PubMed  Google Scholar 

  44. Hirsch FR, Jänne PA, Eberhardt WE, Cappuzzo F, Thatcher N, Pirker R, et al. Epidermal growth factor receptor inhibition in lung cancer: status 2012. J Thorac Oncol. 2013;8:373–84.

    Article  CAS  PubMed  Google Scholar 

  45. Li WY, Li Q. P57-mediated autophagy promotes the efficacy of EGFR inhibitors in hepatocellular carcinoma. Liver Int. 2019;39:147–57.

    Article  CAS  PubMed  Google Scholar 

  46. Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res. 2008;68:2391–9.

    Article  CAS  PubMed  Google Scholar 

  47. Zhu AX, Stuart K, Blaszkowsky LS, Muzikansky A, Reitberg DP, Clark JW, et al. Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma. Cancer. 2007;110:581–9.

    Article  CAS  PubMed  Google Scholar 

  48. Asnacios A, Fartoux L, Romano O, Tesmoingt C, Louafi SS, Mansoubakht T, et al. Gemcitabine plus oxaliplatin (GEMOX) combined with cetuximab in patients with progressive advanced stage hepatocellular carcinoma: results of a multicenter phase 2 study. Cancer. 2008;112:2733–9.

    Article  CAS  PubMed  Google Scholar 

  49. Chen W, Shen X, Xia X, Xu G, Ma T, Bai X, et al. NSC 74859-mediated inhibition of STAT3 enhances the anti-proliferative activity of cetuximab in hepatocellular carcinoma. Liver Int. 2012;32:70–77.

    Article  PubMed  Google Scholar 

  50. Perugorria MJ, Olaizola P, Labiano I, Esparza-Baquer A, Marzioni M, Marin J, et al. Wnt-β-catenin signalling in liver development, health and disease. Nat Rev Gastroenterol Hepatol. 2019;16:121–36.

    Article  CAS  PubMed  Google Scholar 

  51. Caruso S, O'Brien DR, Cleary SP, Roberts LR, Zucman-Rossi J. Genetics of HCC: novel approaches to explore molecular diversity. Hepatology. 2020;35:331–49.

    Google Scholar 

  52. Davila M, Frost AR, Grizzle WE, Chakrabarti R. LIM kinase 1 is essential for the invasive growth of prostate epithelial cells: implications in prostate cancer. J Biol Chem. 2003;278:36868–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank AJE [aje.com] for English language editing.

Author contributions

LZ and RZ led the study design and prepared the manuscript. Z-HP and C-QL carried out the experiments. Y-FZ and Z-YX performed statistical analysis; LW and M-HJ assisted in tissue sample collection. Y-JZ performed data analysis and interpretation.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 81773082, 81872423, 81972813, 81702903), Guangdong Natural Science Foundation (2017A030310038, 2018B030311036, 2019A1515010974) and Fork Ying Tung Education Foundation (161035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Zhou or Liang Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

All experiments performed are endorsed by the Ethics Committee of Southern Medical University and complied with the Declaration of Helsinki. All animal experiments were carried out with the approval of the Southern Medical University Animal Care and Use Committee in accordance with the guidelines for the ethical treatment of animals. All animal experiments involved ethical and humane treatment under a license from the Guangdong Provincial Bureau of Science.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Liu, C., Zhi, Y. et al. LIMK1 nuclear translocation promotes hepatocellular carcinoma progression by increasing p-ERK nuclear shuttling and by activating c-Myc signalling upon EGF stimulation. Oncogene 40, 2581–2595 (2021). https://doi.org/10.1038/s41388-021-01736-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01736-2

This article is cited by

Search

Quick links