Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oncogenic functions and therapeutic targeting of EphA2 in cancer

Abstract

More than 25 years of research and preclinical validation have defined EphA2 receptor tyrosine kinase as a promising molecular target for clinical translation in cancer treatment. Molecular, genetic, biochemical, and pharmacological targeting strategies have been extensively tested in vitro and in vivo, and drugs like dasatinib, initially designed to target SRC family kinases, have been found to also target EphA2 activity. Other small molecules, therapeutic targeting antibodies, and peptide-drug conjugates are being tested, and more recently, approaches harnessing antitumor immunity against EphA2-expressing cancer cells have emerged as a promising strategy. This review will summarize preclinical studies supporting the oncogenic role of EphA2 in breast cancer, lung cancer, glioblastoma, and melanoma, while delineating the differing roles of canonical and noncanonical EphA2 signaling in each setting. This review also summarizes completed and ongoing clinical trials, highlighting the promise and challenges of targeting EphA2 in cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Eph receptor tyrosine kinase structure and function.
Fig. 2: EphA2 therapeutic targeting strategies.

References

  1. 1.

    Perez White BE, Getsios S. Eph receptor and ephrin function in breast, gut, and skin epithelia. Cell Adh Migr. 2014;8:327–38.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Liang LY, Patel O, Janes PW, Murphy JM, Lucet IS. Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene. 2019;38:6567–84.

    CAS  PubMed  Google Scholar 

  3. 3.

    Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol. 2013;5:1–20.

    Google Scholar 

  4. 4.

    Park JE, Son AI, Zhou R. Roles of EphA2 in development and disease. Genes. 2013;4:334–57.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Himanen JP, Rajashankar KR, Lackmann M, Cowan CA, Henkemeyer M, Nikolov DB. Crystal structure of an Eph receptor-ephrin complex. Nature. 2001;414:933–8.

    CAS  PubMed  Google Scholar 

  6. 6.

    Himanen JP, Goldgur Y, Miao H, Myshkin E, Guo H, Buck M, et al. Ligand recognition by A-class Eph receptors: crystal structures of the EphA2 ligand-binding domain and the EphA2/ephrin-A1 complex. EMBO Rep. 2009;10:722–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F. Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell. 2001;106:745–57.

    CAS  PubMed  Google Scholar 

  8. 8.

    Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol. 2002;3:475–86.

    CAS  PubMed  Google Scholar 

  9. 9.

    Zisch AH, Pazzagli C, Freeman AL, Schneller M, Hadman M, Smith JW, et al. Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Oncogene. 2000;19:177–87.

    CAS  PubMed  Google Scholar 

  10. 10.

    Brantley-Sieders DM, Zhuang G, Hicks D, Fang WB, Hwang Y, Cates JM, et al. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Investig. 2008;118:64–78.

    CAS  PubMed  Google Scholar 

  11. 11.

    Zantek ND, Azimi M, Fedor-Chaiken M, Wang B, Brackenbury R, Kinch MS. E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ. 1999;10:629–38.

    CAS  PubMed  Google Scholar 

  12. 12.

    Miao H, Burnett E, Kinch M, Simon E, Wang B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol. 2000;2:62–69.

    CAS  PubMed  Google Scholar 

  13. 13.

    Larsen AB, Pedersen MW, Stockhausen MT, Grandal MV, van Deurs B, Poulsen HS. Activation of the EGFR gene target EphA2 inhibits epidermal growth factor-induced cancer cell motility. Mol Cancer Res. 2007;5:283–93.

    CAS  PubMed  Google Scholar 

  14. 14.

    Miao H, Li DQ, Mukherjee A, Guo H, Petty A, Cutter J, et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell. 2009;16:9–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Zhou Y, Yamada N, Tanaka T, Hori T, Yokoyama S, Hayakawa Y, et al. Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2. Nat Commun. 2015;6:7679.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Barquilla A, Lamberto I, Noberini R, Heynen-Genel S, Brill LM, Pasquale EB. Protein kinase A can block EphA2 receptor-mediated cell repulsion by increasing EphA2 S897 phosphorylation. Mol Biol Cell. 2016;27:2757–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zhou Y, Sakurai H. Emerging and diverse functions of the EphA2 noncanonical pathway in cancer progression. Biol Pharm Bull. 2017;40:1616–24.

    CAS  PubMed  Google Scholar 

  18. 18.

    American Cancer Society. Cancer Facts & Figures 2020. Atlanta: American Cancer Society; 2020.

  19. 19.

    Weigelt B, Geyer FC, Reis-Filho JS. Histological types of breast cancer: how special are they? Mol Oncol. 2010;4:192–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol. 2011;5:5–23.

    CAS  PubMed  Google Scholar 

  21. 21.

    Kikawa KD, Vidale DR, Van Etten RL, Kinch MS. Regulation of the EphA2 kinase by the low molecular weight tyrosine phosphatase induces transformation. J Biol Chem. 2002;277:39274–9.

    CAS  PubMed  Google Scholar 

  22. 22.

    Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 2001;61:2301–6.

    CAS  PubMed  Google Scholar 

  23. 23.

    Vaught D, Chen J, Brantley-Sieders DM. Regulation of mammary gland branching morphogenesis by EphA2 receptor tyrosine kinase. Mol Biol Cell. 2009;20:2572–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Brantley-Sieders DM, Jiang A, Sarma K, Badu-Nkansah A, Walter DL, Shyr Y, et al. Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome. PLoS ONE. 2011;6:e24426.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Song W, Hwang Y, Youngblood VM, Cook RS, Balko JM, Chen J, et al. Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers. Oncogene. 2017;36:5620–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Noblitt LW, Bangari DS, Shukla S, Knapp DW, Mohammed S, Kinch MS, et al. Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther. 2004;11:757–66.

    CAS  PubMed  Google Scholar 

  27. 27.

    Youngblood VM, Kim LC, Edwards DN, Hwang Y, Santapuram PR, Stirdivant SM, et al. The Ephrin-A1/EPHA2 signaling axis regulates glutamine metabolism in HER2-positive breast cancer. Cancer Res. 2016;76:1825–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Fattet L, Jung HY, Matsumoto MW, Aubol BE, Kumar A, Adams JA, et al. Matrix rigidity controls epithelial-mesenchymal plasticity and tumor metastasis via a mechanoresponsive EPHA2/LYN complex. Dev Cell. 2020;54:302–16. e307

    CAS  PubMed  Google Scholar 

  29. 29.

    Zhuang G, Brantley-Sieders DM, Vaught D, Yu J, Xie L, Wells S, et al. Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Res. 2010;70:299–308.

    CAS  PubMed  Google Scholar 

  30. 30.

    Gokmen-Polar Y, Toroni RA, Hocevar BA, Badve S, Zhao Q, Shen C, et al. Dual targeting of EphA2 and ER restores tamoxifen sensitivity in ER/EphA2-positive breast cancer. Breast Cancer Res Treat. 2011;127:375–84.

    PubMed  Google Scholar 

  31. 31.

    Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10:1243–60.

    PubMed  Google Scholar 

  32. 32.

    Weinstein IB, Joe AK. Mechanisms of disease: oncogene addiction-a rationale for molecular targeting in cancer therapy. Nat Clin Pr Oncol. 2006;3:448–57.

    CAS  Google Scholar 

  33. 33.

    Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer. 2019;19:495–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Chan BA, Hughes BG. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res. 2015;4:36–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217–23.

    CAS  PubMed  Google Scholar 

  36. 36.

    Shen W, Xi H, Zhang K, Cui J, Li J, Wang N, et al. Prognostic role of EphA2 in various human carcinomas: a meta-analysis of 23 related studies. Growth Factors. 2014;32:247–53.

    CAS  PubMed  Google Scholar 

  37. 37.

    Ishikawa M, Miyahara R, Sonobe M, Horiuchi M, Mennju T, Nakayama E, et al. Higher expression of EphA2 and ephrin-A1 is related to favorable clinicopathological features in pathological stage I non-small cell lung carcinoma. Lung Cancer. 2012;76:431–8.

    PubMed  Google Scholar 

  38. 38.

    Brannan JM, Sen B, Saigal B, Prudkin L, Behrens C, Solis L, et al. EphA2 in the early pathogenesis and progression of non-small cell lung cancer. Cancer Prev Res. 2009;2:1039–49.

    CAS  Google Scholar 

  39. 39.

    Kinch MS, Moore MB, Harpole DH Jr. Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res. 2003;9:613–8.

    CAS  PubMed  Google Scholar 

  40. 40.

    Guo C, Shao R, Correa AM, Behrens C, Johnson FM, Raso MG, et al. Prognostic significance of combinations of RNA-dependent protein kinase and EphA2 biomarkers for NSCLC. J Thorac Oncol. 2013;8:301–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Faoro L, Singleton PA, Cervantes GM, Lennon FE, Choong NW, Kanteti R, et al. EphA2 mutation in lung squamous cell carcinoma promotes increased cell survival, cell invasion, focal adhesions, and mammalian target of rapamycin activation. J Biol Chem. 2010;285:18575–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Tan YC, Srivastava S, Won BM, Kanteti R, Arif Q, Husain AN, et al. EPHA2 mutations with oncogenic characteristics in squamous cell lung cancer and malignant pleural mesothelioma. Oncogenesis. 2019;8:49.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Amato KR, Wang S, Hastings AK, Youngblood VM, Santapuram PR, Chen H, et al. Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. J Clin Investig. 2014;124:2037–49.

    CAS  PubMed  Google Scholar 

  44. 44.

    Amato KR, Wang S, Tan L, Hastings AK, Song W, Lovly CM, et al. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res. 2016;76:305–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Koch H, Busto ME, Kramer K, Médard G, Kuster B. Chemical proteomics uncovers EPHA2 as a mechanism of acquired resistance to small molecule EGFR kinase inhibition. J Proteome Res. 2015;14:2617–25.

    CAS  PubMed  Google Scholar 

  46. 46.

    Larsen AB, Stockhausen MT, Poulsen HS. Cell adhesion and EGFR activation regulate EphA2 expression in cancer. Cell Signal. 2010;22:636–44.

    CAS  PubMed  Google Scholar 

  47. 47.

    Yeddula N, Xia Y, Ke E, Beumer J, Verma IM. Screening for tumor suppressors: Loss of ephrin receptor A2 cooperates with oncogenic KRas in promoting lung adenocarcinoma. Proc Natl Acad Sci USA. 2015;112:E6476–6485.

    CAS  PubMed  Google Scholar 

  48. 48.

    Volz C, Breid S, Selenz C, Zaplatina A, Golfmann K, Meder L, et al. Inhibition of tumor VEGFR2 induces serine 897 EphA2-dependent tumor cell invasion and metastasis in NSCLC. Cell Rep. 2020;31:107568.

    CAS  PubMed  Google Scholar 

  49. 49.

    Song W, Ma Y, Wang J, Brantley-Sieders D, Chen J. JNK signaling mediates EPHA2-dependent tumor cell proliferation, motility, and cancer stem cell-like properties in non-small cell lung cancer. Cancer Res. 2014;74:2444–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Song W, Kim LC, Han W, Hou Y, Edwards D, Wang S. et al. Phosphorylation of PLCγ1 by EphA2 receptor tyrosine kinase promotes tumor growth in lung cancer. Mol Cancer Res. 2020;18:1735–43.

    CAS  PubMed  Google Scholar 

  51. 51.

    North HA, Clifford MA, Donoghue MJ. ‘Til Eph do us part’: intercellular signaling via Eph receptors and ephrin ligands guides cerebral cortical development from birth through maturation. Cereb Cortex. 2013;23:1765–73.

    PubMed  Google Scholar 

  52. 52.

    Lim DA, Alvarez-Buylla A. The Adult Ventricular-Subventricular Zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harb Perspect Biol. 2016;8:1–33.

    CAS  Google Scholar 

  53. 53.

    Holmberg J, Armulik A, Senti KA, Edoff K, Spalding K, Momma S, et al. Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev. 2005;19:462–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Conover JC, Doetsch F, Garcia-Verdugo JM, Gale NW, Yancopoulos GD, Alvarez-Buylla A. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci. 2000;3:1091–7.

    CAS  PubMed  Google Scholar 

  55. 55.

    Wang LF, Fokas E, Bieker M, Rose F, Rexin P, Zhu Y, et al. Increased expression of EphA2 correlates with adverse outcome in primary and recurrent glioblastoma multiforme patients. Oncol Rep. 2008;19:151–6.

    PubMed  Google Scholar 

  56. 56.

    Wykosky J, Gibo DM, Stanton C, Debinski W. EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res. 2005;3:541–51.

    CAS  PubMed  Google Scholar 

  57. 57.

    Liu F, Park PJ, Lai W, Maher E, Chakravarti A, Durso L, et al. A genome-wide screen reveals functional gene clusters in the cancer genome and identifies EphA2 as a mitogen in glioblastoma. Cancer Res. 2006;66:10815–23.

    CAS  PubMed  Google Scholar 

  58. 58.

    Hatano M, Eguchi J, Tatsumi T, Kuwashima N, Dusak JE, Kinch MS, et al. EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia. 2005;7:717–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Chen J, Song W, Amato K. Eph receptor tyrosine kinases in cancer stem cells. Cytokine Growth Factor Rev. 2015;26:1–6.

    PubMed  Google Scholar 

  60. 60.

    Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488:522–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015;29:1203–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Binda E, Visioli A, Giani F, Lamorte G, Copetti M, Pitter KL, et al. The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell. 2012;22:765–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Affinito A, Quintavalle C, Esposito CL, Roscigno G, Vilardo C, Nuzzo S, et al. The discovery of RNA APtamers That Selectively Bind Glioblastoma Stem Cells. Mol Ther Nucleic Acids. 2019;18:99–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Affinito A, Quintavalle C, Esposito CL, Roscigno G, Giordano C, Nuzzo S, et al. Targeting Ephrin receptor tyrosine kinase A2 with a selective aptamer for glioblastoma stem cells. Mol Ther Nucleic Acids. 2020;20:176–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Miao H, Gale NW, Guo H, Qian J, Petty A, Kaspar J, et al. EphA2 promotes infiltrative invasion of glioma stem cells in vivo through cross-talk with Akt and regulates stem cell properties. Oncogene. 2015;34:558–67.

    CAS  PubMed  Google Scholar 

  66. 66.

    Hamaoka Y, Negishi M, Katoh H. EphA2 is a key effector of the MEK/ERK/RSK pathway regulating glioblastoma cell proliferation. Cell Signal. 2016;28:937–45.

    CAS  PubMed  Google Scholar 

  67. 67.

    Ramnarain DB, Park S, Lee DY, Hatanpaa KJ, Scoggin SO, Otu H, et al. Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. Cancer Res. 2006;66:867–74.

    CAS  PubMed  Google Scholar 

  68. 68.

    Okada H, Low KL, Kohanbash G, McDonald HA, Hamilton RL, Pollack IF. Expression of glioma-associated antigens in pediatric brain stem and non-brain stem gliomas. J Neurooncol. 2008;88:245–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Normolle DP, et al. Antigen-specific immunoreactivity and clinical outcome following vaccination with glioma-associated antigen peptides in children with recurrent high-grade gliomas: results of a pilot study. J Neurooncol. 2016;130:517–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Chow KK, Naik S, Kakarla S, Brawley VS, Shaffer DR, Yi Z, et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Ther. 2013;21:629–37.

    CAS  PubMed  Google Scholar 

  71. 71.

    Bielamowicz K, Fousek K, Byrd TT, Samaha H, Mukherjee M, Aware N, et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol. 2018;20:506–18.

    CAS  PubMed  Google Scholar 

  72. 72.

    Ferluga S, Tome CM, Herpai DM, D’Agostino R, Debinski W. Simultaneous targeting of Eph receptors in glioblastoma. Oncotarget. 2016;7:59860–76.

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Gravina GL, Mancini A, Colapietro A, Delle Monache S, Sferra R, Vitale F. et al. The small molecule ephrin receptor inhibitor, GLPG1790, reduces renewal capabilities of cancer stem cells, showing anti-tumour efficacy on preclinical glioblastoma models. Cancers. 2019;11:1–27.

    Google Scholar 

  74. 74.

    Easty DJ, Ganz SE, Farr CJ, Lai C, Herlyn M, Bennett DC. Novel and known protein tyrosine kinases and their abnormal expression in human melanoma. J Invest Dermatol. 1993;101:679–84.

    CAS  PubMed  Google Scholar 

  75. 75.

    Easty DJ, Herlyn M, Bennett DC. Abnormal protein tyrosine kinase gene expression during melanoma progression and metastasis. Int J Cancer. 1995;60:129–36.

    CAS  PubMed  Google Scholar 

  76. 76.

    Udayakumar D, Zhang G, Ji Z, Njauw CN, Mroz P, Tsao H. EphA2 is a critical oncogene in melanoma. Oncogene. 2011;30:4921–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Margaryan NV, Strizzi L, Abbott DE, Seftor EA, Rao MS, Hendrix MJ, et al. EphA2 as a promoter of melanoma tumorigenicity. Cancer Biol Ther. 2009;8:279–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Zhang G, Njauw CN, Park JM, Naruse C, Asano M, Tsao H. EphA2 is an essential mediator of UV radiation-induced apoptosis. Cancer Res. 2008;68:1691–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Miao B, Ji Z, Tan L, Taylor M, Zhang J, Choi HG, et al. EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma. Cancer Discov. 2015;5:274–87.

    CAS  PubMed  Google Scholar 

  80. 80.

    Azimi A, Tuominen R, Costa Svedman F, Caramuta S, Pernemalm M, Frostvik Stolt M, et al. Silencing FLI or targeting CD13/ANPEP lead to dephosphorylation of EPHA2, a mediator of BRAF inhibitor resistance, and induce growth arrest or apoptosis in melanoma cells. Cell Death Dis. 2017;8:e3029.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Paraiso KH, Das Thakur M, Fang B, Koomen JM, Fedorenko IV, John JK, et al. Ligand-independent EPHA2 signaling drives the adoption of a targeted therapy-mediated metastatic melanoma phenotype. Cancer Discov. 2015;5:264–73.

    CAS  PubMed  Google Scholar 

  82. 82.

    Parri M, Taddei ML, Bianchini F, Calorini L, Chiarugi P. EphA2 reexpression prompts invasion of melanoma cells shifting from mesenchymal to amoeboid-like motility style. Cancer Res. 2009;69:2072–81.

    CAS  PubMed  Google Scholar 

  83. 83.

    Mo J, Zhao X, Dong X, Liu T, Zhao N, Zhang D. et al. Effect of EphA2 knockdown on melanoma metastasis depends on intrinsic ephrinA1 level. Cell Oncol. 2020;43:655–67.

    CAS  Google Scholar 

  84. 84.

    Easty DJ, Hill SP, Hsu MY, Fallowfield ME, Florenes VA, Herlyn M, et al. Up-regulation of ephrin-A1 during melanoma progression. Int J Cancer. 1999;84:494–501.

    CAS  PubMed  Google Scholar 

  85. 85.

    Easty DJ, Guthrie BA, Maung K, Farr CJ, Lindberg RA, Toso RJ, et al. Protein B61 as a new growth factor: expression of B61 and up-regulation of its receptor epithelial cell kinase during melanoma progression. Cancer Res. 1995;55:2528–32.

    CAS  PubMed  Google Scholar 

  86. 86.

    Sakamoto A, Kato K, Hasegawa T, Ikeda S. An Agonistic Antibody to EPHA2 Exhibits Antitumor Effects on Human Melanoma Cells. Anticancer Res. 2018;38:3273–82.

    CAS  PubMed  Google Scholar 

  87. 87.

    Jackson D, Gooya J, Mao S, Kinneer K, Xu L, Camara M, et al. A human antibody-drug conjugate targeting EphA2 inhibits tumor growth in vivo. Cancer Res. 2008;68:9367–74.

    CAS  PubMed  Google Scholar 

  88. 88.

    Annunziata CM, Kohn EC, LoRusso P, Houston ND, Coleman RL, Buzoianu M, et al. Phase 1, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Investig N. Drugs. 2013;31:77–84.

    CAS  Google Scholar 

  89. 89.

    Koshikawa N, Hoshino D, Taniguchi H, Minegishi T, Tomari T, Nam SO, et al. Proteolysis of EphA2 Converts It from a Tumor Suppressor to an Oncoprotein. Cancer Res. 2015;75:3327–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Hasegawa J, Sue M, Yamato M, Ichikawa J, Ishida S, Shibutani T, et al. Novel anti-EPHA2 antibody, DS-8895a for cancer treatment. Cancer Biol Ther. 2016;17:1158–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Ludwig Institute for Cancer Research, Daiichi Sankyo Co. Ltd., Austin Health. Safety and bioimaging trial of DS-8895a in patients with advanced EphA2 positive cancers. 2014. https://ClinicalTrials.gov/show/NCT02252211.

  92. 92.

    Shitara K, Satoh T, Iwasa S, Yamaguchi K, Muro K, Komatsu Y, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the afucosylated, humanized anti-EPHA2 antibody DS-8895a: a first-in-human phase I dose escalation and dose expansion study in patients with advanced solid tumors. J Immunother Cancer. 2019;7:219.

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Bennett G, Brown A, Mudd G, Huxley P, Van Rietschoten K, Pavan S, et al. MMAE Delivery Using the. Mol Cancer Ther. 2020;19:1385–94.

    CAS  PubMed  Google Scholar 

  94. 94.

    Bicycle Tx Limited. Study BT5528-100 in patients with advanced solid tumors associated with EphA2 expression. 2019. https://ClinicalTrials.gov/show/NCT04180371.

  95. 95.

    Heinzlmeir S, Kudlinzki D, Sreeramulu S, Klaeger S, Gande SL, Linhard V, et al. Chemical proteomics and structural biology define EPHA2 inhibition by clinical kinase drugs. ACS Chem Biol. 2016;11:3400–11.

    CAS  PubMed  Google Scholar 

  96. 96.

    Mitri Z, Nanda R, Blackwell K, Costelloe CM, Hood I, Wei C, et al. TBCRC-010: phase I/II study of dasatinib in combination with zoledronic acid for the treatment of breast cancer bone metastasis. Clin Cancer Res. 2016;22:5706–12.

    CAS  PubMed  Google Scholar 

  97. 97.

    Kim C, Liu S, Crawford J, Subramaniam D, Giaccone G. MA09.01A phase I/II trial of dasatinib and osimertinib in TKI naive patients with advanced EGFR-mutant non-small cell lung cancer (NSCLC). J Thorac Oncol. 2019;14:S281–S282.

    Google Scholar 

  98. 98.

    Tarhini AA, Tawbi H, Storkus WJ. Vaccine therapy + dasatinib for the treatment of patients with stage IIIB-IV melanoma. Melanoma Manag. 2016;3:251–4.

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Duke University, Bristol-Myers Squibb. Phase II Dasatinib Study in advanced breast cancer. 2007. https://ClinicalTrials.gov/show/NCT00546104.

  100. 100.

    Finn RS, Bengala C, Ibrahim N, Roché H, Sparano J, Strauss LC, et al. Dasatinib as a single agent in triple-negative breast cancer: results of an open-label phase 2 study. Clin Cancer Res. 2011;17:6905–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Kluger HM, Dudek AZ, McCann C, Ritacco J, Southard N, Jilaveanu LB, et al. A phase 2 trial of dasatinib in advanced melanoma. Cancer. 2011;117:2202–8.

    CAS  PubMed  Google Scholar 

  102. 102.

    Chee CE, Krishnamurthi S, Nock CJ, Meropol NJ, Gibbons J, Fu P, et al. Phase II study of dasatinib (BMS-354825) in patients with metastatic adenocarcinoma of the pancreas. Oncologist. 2013;18:1091–2.

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem. 2004;47:6658–61.

    CAS  PubMed  Google Scholar 

  104. 104.

    University of Wisconsin Madison, National Cancer Institute (NCI). Window of opportunity trial of dasatinib in operable triple negative breast cancers with nEGFR. 2017. https://ClinicalTrials.gov/show/NCT02720185.

  105. 105.

    OHSU Knight Cancer Institute, Oregon Health and Science University. A personalized medicine study for patients with advanced cancer of the breast, prostate, pancreas or those with refractory acute myelogenous leukemia. 2019. https://ClinicalTrials.gov/show/NCT03878524.

  106. 106.

    National Cancer Institute (NCI). Targeted therapy directed by genetic testing in treating patients with advanced refractory solid tumors, lymphomas, or multiple myeloma (The MATCH Screening Trial). 2015. https://ClinicalTrials.gov/show/NCT02465060.

  107. 107.

    Gambini L, Salem AF, Udompholkul P, Tan XF, Baggio C, Shah N, et al. Structure-based design of novel EphA2 agonistic agents with nanomolar affinity in vitro and in cell. ACS Chem Biol. 2018;13:2633–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Fang WB, Brantley-Sieders DM, Parker MA, Reith AD, Chen J. A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis. Oncogene. 2005;24:7859–68.

    CAS  PubMed  Google Scholar 

  109. 109.

    Sugiyama N, Gucciardo E, Tatti O, Varjosalo M, Hyytiäinen M, Gstaiger M, et al. EphA2 cleavage by MT1-MMP triggers single cancer cell invasion via homotypic cell repulsion. J Cell Biol. 2013;201:467–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Choi K, Creighton CJ, Stivers D, Fujimoto N, Kurie JM. Transcriptional profiling of non-small cell lung cancer cells with activating EGFR somatic mutations. PLoS ONE. 2007;2:e1226.

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Hess AR, Seftor EA, Gardner LM, Carles-Kinch K, Schneider GB, Seftor RE, et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res. 2001;61:3250–5.

    CAS  PubMed  Google Scholar 

  112. 112.

    Daiichi Sankyo Co. Ltd., Daiichi Sankyo Inc. Phase 1 study of DS-8895a in subjects with advanced solid tumors. 2013. https://ClinicalTrials.gov/show/NCT02004717.

  113. 113.

    Xuanwu Hospital, Beijing, Beijing Mario Biotech Company, Hebei Senlang BIotech Company, Beijing HuiNengAn Biotech Company. Personalized chimeric antigen receptor T Cell immunotherapy for patients with recurrent malignant gliomas. 2018. https://ClinicalTrials.gov/show/NCT03423992.

  114. 114.

    M.D. Anderson Cancer Center, National Cancer Institute (NCI). EphA2 siRNA in treating patients with advanced or recurrent solid tumors. 2015. https://ClinicalTrials.gov/show/NCT01591356.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dana M. Brantley-Sieders.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilson, K., Shiuan, E. & Brantley-Sieders, D.M. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene 40, 2483–2495 (2021). https://doi.org/10.1038/s41388-021-01714-8

Download citation

Further reading

Search

Quick links