Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of low-frequency variants of UGT1A3 associated with bladder cancer risk by next-generation sequencing

Abstract

Although genome-wide association studies (GWASs) have successfully revealed many common risk variants for bladder cancer, the heritability is still largely unexplained. We hypothesized that low-frequency variants involved in bladder cancer risk could reveal the unexplained heritability. Next-generation sequencing of 113 patients and 118 controls was conducted on 81 genes/regions of known bladder cancer GWAS loci. A two-stage validation comprising 3,350 cases and 4,005 controls was performed to evaluate the effects of low-frequency variants on bladder cancer risk. Biological experiments and techniques, including electrophoretic mobility shift assays, CRISPR/Cas9, RNA-Seq, and bioinformatics approaches, were performed to assess the potential functions of low-frequency variants. The low-frequency variant rs28898617 was located in the first exon of UGT1A3 and was significantly associated with increased bladder cancer risk (odds ratio = 1.50, P = 3.10 × 10−6). Intriguingly, rs28898617 was only observed in the Asian population, but monomorphism was observed in the European population. The risk-associated G allele of rs28898617 increased UGT1A3 expression, facilitated UGT1A3 transcriptional activity, and enhanced the binding activity. In addition, UGT1A3 deletion significantly inhibited the proliferation, invasion, and migration of bladder cancer cells and xenograft tumor growth. Mechanistically, UGT1A3 induced LAMC2 expression by binding CBP and promoting histone acetylation, which remarkably promoted the progression of bladder cancer. This is the first targeted sequencing study to reveal that the novel low-frequency variant rs28898617 and its associated gene UGT1A3 are involved in bladder cancer development, providing new insights into the genetic architecture of bladder cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The producers of the identified low-frequency variant associated with bladder cancer risk.
Fig. 2: The expression pattern of UGT1A3 and allele-specific effect of rs28898617.
Fig. 3: Roles of UGT1A3 knockout in the bladder cancer cellular phenotype.
Fig. 4: The effect of LAMC2 regulation by UGT1A3 on the bladder cancer cellular phenotype.
Fig. 5: Effect of UGT1A3 knockout on tumors in xenograft models.

Similar content being viewed by others

References

  1. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol. 2017;71:96–108.

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  4. Suer E, Hamidi N, Gokce MI, Gulpinar O, Turkolmez K, Beduk Y, et al. Significance of second transurethral resection on patient outcomes in muscle-invasive bladder cancer patients treated with bladder-preserving multimodal therapy. World J Urol. 2016;34:847–51.

    Article  CAS  PubMed  Google Scholar 

  5. Ghasemzadeh A, Bivalacqua TJ, Hahn NM, Drake CG. New strategies in bladder cancer: a second coming for immunotherapy. Clin Cancer Res. 2016;22:793–801.

    Article  CAS  PubMed  Google Scholar 

  6. Freedman ND, Silverman DT, Hollenbeck AR, Schatzkin A, Abnet CC. Association between smoking and risk of bladder cancer among men and women. JAMA. 2011;306:737–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koutros S, Silverman DT, Alavanja MC, Andreotti G, Lerro CC, Heltshe S, et al. Occupational exposure to pesticides and bladder cancer risk. Int J Epidemiol. 2016;45:792–805.

    Article  PubMed  Google Scholar 

  8. Turati F, Edefonti V, Bosetti C, Ferraroni M, Malvezzi M, Franceschi S, et al. Family history of cancer and the risk of cancer: a network of case-control studies. Ann Oncol. 2013;24:2651–6.

    Article  CAS  PubMed  Google Scholar 

  9. Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T, et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA. 2016;315:68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang P, Ye D, Guo J, Liu F, Jiang H, Gong J, et al. Genetic score of multiple risk-associated single nucleotide polymorphisms is a marker for genetic susceptibility to bladder cancer. Genes Chromosomes Cancer. 2014;53:98–105.

    Article  CAS  PubMed  Google Scholar 

  11. Ma Z, Hu Q, Chen Z, Tao S, Macnamara L, Kim ST, et al. Systematic evaluation of bladder cancer risk-associated single-nucleotide polymorphisms in a Chinese population. Mol Carcinog. 2013;52:916–21.

    Article  CAS  PubMed  Google Scholar 

  12. Rothman N, Garcia-Closas M, Chatterjee N, Malats N, Wu X, Figueroa JD, et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat Genet. 2010;42:978–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang M, Li Z, Chu H, Lv Q, Ye D, Ding Q, et al. Genome-wide association study of bladder cancer in a chinese cohort reveals a new susceptibility locus at 5q12.3. Cancer Res. 2016;76:3277–84.

    Article  CAS  PubMed  Google Scholar 

  14. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA. 2009;106:9362–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50. https://doi.org/10.1038/nrg2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Long J, Lu W, Shu XO, Cai Q, Zheng Y, et al. Rare coding variants and breast cancer risk: evaluation of susceptibility Loci identified in genome-wide association studies. Cancer Epidemiol Biomark Prev. 2014;23:622–8.

    Article  CAS  Google Scholar 

  17. Zhu M, Yan C, Ren C, Huang X, Zhu X, Gu H, et al. Exome array analysis identifies variants in SPOCD1 and BTN3A2 that affect risk for gastric cancer. Gastroenterology 2017;152:2011–21.

    Article  CAS  PubMed  Google Scholar 

  18. Jin G, Zhu M, Yin R, Shen W, Liu J, Sun J, et al. Low-frequency coding variants at 6p21.33 and 20q11.21 are associated with lung cancer risk in Chinese populations. Am J Hum Genet. 2015;96:832–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.

    Article  PubMed  CAS  Google Scholar 

  20. Ewing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med. 2012;366:141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loveday C, Turnbull C, Ramsay E, Hughes D, Ruark E, Frankum JR, et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet. 2011;43:879–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet. 2008;40:17–22.

    Article  CAS  PubMed  Google Scholar 

  23. Wu J, Wang M, Chen H, Xu J, Zhang G, Gu C, et al. The rare variant rs35356162 in UHRF1BP1 increases bladder cancer risk in Han Chinese population. Front Oncol. 2020;10:134–43.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mancuso N, Rohland N, Rand KA, Tandon A, Allen A, Quinque D, et al. The contribution of rare variation to prostate cancer heritability. Nat Genet. 2016;48:30–35.

    Article  CAS  PubMed  Google Scholar 

  25. Shyr D, Liu Q. Next generation sequencing in cancer research and clinical application. Biol Proced Online. 2013;15:1480–9222.

    Article  CAS  Google Scholar 

  26. Sathe A, Nawroth R. Targeting the PI3K/AKT/mTOR Pathway in Bladder Cancer. Methods Mol Biol. 2018;1655:335–50.

    Article  CAS  PubMed  Google Scholar 

  27. Smith SC, Nicholson B, Nitz M, Frierson HF Jr., Smolkin M, Hampton G, et al. Profiling bladder cancer organ site-specific metastasis identifies LAMC2 as a novel biomarker of hematogenous dissemination. Am J Pathol. 2009;174:371–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liang Y, Chen X, Wu Y, Li J, Zhang S, Wang K, et al. LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death Differ. 2018;25:1980–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hong SN, Park C, Park SJ, Lee CK, Ye BD, Kim YS, et al. Deep resequencing of 131 Crohn’s disease associated genes in pooled DNA confirmed three reported variants and identified eight novel variants. Gut 2016;65:788–96.

    Article  CAS  PubMed  Google Scholar 

  30. Ruark E, Snape K, Humburg P, Loveday C, Bajrami I, Brough R, et al. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature. 2013;493:406–10.

    Article  CAS  PubMed  Google Scholar 

  31. Gudmundsson J, Sulem P, Gudbjartsson DF, Masson G, Agnarsson BA, Benediktsdottir KR, et al. A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nat Genet. 2012;44:1326–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature 2016;536:41–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leslie EJ, Taub MA, Liu H, Steinberg KM, Koboldt DC, Zhang Q, et al. Identification of functional variants for cleft lip with or without cleft palate in or near PAX7, FGFR2, and NOG by targeted sequencing of GWAS loci. Am J Hum Genet. 2015;96:397–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iwai M, Maruo Y, Ito M, Yamamoto K, Sato H, Takeuchi Y. Six novel UDP-glucuronosyltransferase (UGT1A3) polymorphisms with varying activity. J Hum Genet. 2004;49:123–8.

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Chen S, Li X, Wang X, Zeng S. Genetic variants of human UGT1A3: functional characterization and frequency distribution in a Chinese Han population. Drug Metab Dispos. 2006;34:1462–7.

    Article  CAS  PubMed  Google Scholar 

  36. Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharm Toxicol. 2000;40:581–616.

    Article  CAS  Google Scholar 

  37. Strassburg CP, Strassburg A, Nguyen N, Li Q, Manns MP, Tukey RH. Regulation and function of family 1 and family 2 UDP-glucuronosyltransferase genes (UGT1A, UGT2B) in human oesophagus. Biochem J. 1999;338:489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun F, Indran IR, Zhang ZW, Tan MH, Li Y, Lim ZL, et al. A novel prostate cancer therapeutic strategy using icaritin-activated arylhydrocarbon-receptor to co-target androgen receptor and its splice variants. Carcinogenesis. 2015;36:757–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hanioka N, Iwabu H, Hanafusa H, Nakada S, Narimatsu S. Expression and inducibility of UDP-glucuronosyltransferase 1As in MCF-7 human breast carcinoma cells. Basic Clin Pharm Toxicol. 2012;110:253–8.

    Article  CAS  Google Scholar 

  40. Gong QH, Cho JW, Huang T, Potter C, Gholami N, Basu NK, et al. Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics. 2001;11:357–68.

    Article  CAS  PubMed  Google Scholar 

  41. Vogel A, Kneip S, Barut A, Ehmer U, Tukey RH, Manns MP, et al. Genetic link of hepatocellular carcinoma with polymorphisms of the UDP-glucuronosyltransferase UGT1A7 gene. Gastroenterology. 2001;121:1136–44.

    Article  CAS  PubMed  Google Scholar 

  42. Ockenga J, Vogel A, Teich N, Keim V, Manns MP, Strassburg CP. UDP glucuronosyltransferase (UGT1A7) gene polymorphisms increase the risk of chronic pancreatitis and pancreatic cancer. Gastroenterology. 2003;124:1802–8.

    Article  CAS  PubMed  Google Scholar 

  43. Nakamura A, Nakajima M, Yamanaka H, Fujiwara R, Yokoi T. Expression of UGT1A and UGT2B mRNA in human normal tissues and various cell lines. Drug Metab Dispos. 2008;36:1461–4.

    Article  CAS  PubMed  Google Scholar 

  44. Yilmaz L, Borazan E, Aytekin T, Baskonus I, Aytekin A, Oztuzcu S, et al. Increased UGT1A3 and UGT1A7 expression is associated with pancreatic cancer. Asian Pac J Cancer Prev. 2015;16:1651–5.

    Article  PubMed  Google Scholar 

  45. Wang L, Hong X, Yao Z, Dai Y, Zhao G, Qin Z, et al. Glucuronidation of icaritin by human liver microsomes, human intestine microsomes and expressed UDP-glucuronosyltransferase enzymes: identification of UGT1A3, 1A9 and 2B7 as the main contributing enzymes. Xenobiotica. 2018;48:357–67.

    Article  CAS  PubMed  Google Scholar 

  46. Bao L, Zhang Y, Wang J, Wang H, Dong N, Su X, et al. Variations of chromosome 2 gene expressions among patients with lung cancer or non-cancer. Cell Biol Toxicol. 2016;32:419–35.

    Article  CAS  PubMed  Google Scholar 

  47. Dobruch J, Daneshmand S, Fisch M, Lotan Y, Noon AP, Resnick MJ, et al. Gender and bladder cancer: a collaborative review of etiology, biology, and outcomes. Eur Urol. 2016;69:300–10.

    Article  PubMed  Google Scholar 

  48. Inoue S, Mizushima T, Miyamoto H. Role of the androgen receptor in urothelial cancer. Mol Cell Endocrinol. 2018;465:73–81.

    Article  CAS  PubMed  Google Scholar 

  49. Jing Y, Cui D, Guo W, Jiang J, Jiang B, Lu Y, et al. Activated androgen receptor promotes bladder cancer metastasis via Slug mediated epithelial-mesenchymal transition. Cancer Lett. 2014;348:135–45.

    Article  CAS  PubMed  Google Scholar 

  50. Lombard AP, Mudryj M. The emerging role of the androgen receptor in bladder cancer. Endocr Relat Cancer. 2015;22:15–0209.

    Article  CAS  Google Scholar 

  51. Izumi K, Zheng Y, Hsu JW, Chang C, Miyamoto H. Androgen receptor signals regulate UDP-glucuronosyltransferases in the urinary bladder: a potential mechanism of androgen-induced bladder carcinogenesis. Mol Carcinog. 2013;52:94–102.

    Article  PubMed  CAS  Google Scholar 

  52. Kandimalla R, van Tilborg AA, Zwarthoff EC. DNA methylation-based biomarkers in bladder cancer. Nat Rev Urol. 2013;10:327–35.

    Article  CAS  PubMed  Google Scholar 

  53. Wang S, Wu X, Zhang J, Chen Y, Xu J, Xia X, et al. CHIP functions as a novel suppressor of tumour angiogenesis with prognostic significance in human gastric cancer. Gut. 2013;62:496–508.

    Article  CAS  PubMed  Google Scholar 

  54. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li B, Leal SM. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet. 2008;83:311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin DY, Tang ZZ. A general framework for detecting disease associations with rare variants in sequencing studies. Am J Hum Genet. 2011;89:354–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gu J, Wang C, Zhang H, Yue H, Hu W, He J, et al. Targeted resequencing of phosphorus metabolismrelated genes in 86 patients with hypophosphatemic rickets/osteomalacia. Int J Mol Med. 2018;42:1603–14.

    CAS  PubMed  Google Scholar 

  58. Yu X, Chen B, Zhang X, Shentu X. Identification of seven novel ZNF469 mutations in keratoconus patients in a Han Chinese population. Mol Vis. 2017;23:296–305.

    PubMed  PubMed Central  Google Scholar 

  59. Wang M, Gu D, Du M, Xu Z, Zhang S, Zhu L, et al. Common genetic variation in ETV6 is associated with colorectal cancer susceptibility. Nat Commun. 2016;7:11478–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018;46:D260–D266.

    Article  CAS  PubMed  Google Scholar 

  61. Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics 2011;27:1017–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X. Sequence kernel association tests for the combined effect of rare and common variants. Am J Hum Genet. 2013;92:841–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the National Natural Science Foundation of China (81673264) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Public Health and Preventive Medicine). We are grateful to all the people who helped us accomplish this project. We thank Genesky Biotechnologies Inc. (Shanghai, China) for providing technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

MW and ZZ designed the study and provided supervision. QL, CQ, YZ, CG, MW, and DY recruited study subjects. RZ, MD, YG, and JX performed statistical analyses and summarized results. FG, QZ, ZG, and SB performed functional experiments. RZ, MD, and HC prepared the manuscript.

Corresponding authors

Correspondence to Zhengdong Zhang or Meilin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, R., Du, M., Ge, Y. et al. Identification of low-frequency variants of UGT1A3 associated with bladder cancer risk by next-generation sequencing. Oncogene 40, 2382–2394 (2021). https://doi.org/10.1038/s41388-021-01672-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01672-1

This article is cited by

Search

Quick links