Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of CAMKK2 impairs autophagy and castration-resistant prostate cancer via suppression of AMPK-ULK1 signaling

Abstract

Previous work has suggested androgen receptor (AR) signaling mediates prostate cancer progression in part through the modulation of autophagy. However, clinical trials testing autophagy inhibition using chloroquine derivatives in men with castration-resistant prostate cancer (CRPC) have yet to yield promising results, potentially due to the side effects of this class of compounds. We hypothesized that identification of the upstream activators of autophagy in prostate cancer could highlight alternative, context-dependent targets for blocking this important cellular process during disease progression. Here, we used molecular, genetic, and pharmacological approaches to elucidate an AR-mediated autophagy cascade involving Ca2+/calmodulin-dependent protein kinase kinase 2 (CAMKK2; a kinase with a restricted expression profile), 5’-AMP-activated protein kinase (AMPK), and Unc-51 like autophagy activating kinase 1 (ULK1), but independent of canonical mechanistic target of rapamycin (mTOR) activity. Increased CAMKK2-AMPK-ULK1 signaling correlated with disease progression in genetic mouse models and patient tumor samples. Importantly, CAMKK2 disruption impaired tumor growth and prolonged survival in multiple CRPC preclinical mouse models. Similarly, an inhibitor of AMPK-ULK1 blocked autophagy, cell growth, and colony formation in prostate cancer cells. Collectively, our findings converge to demonstrate that AR can co-opt the CAMKK2-AMPK-ULK1 signaling cascade to promote prostate cancer by increasing autophagy. Thus, this pathway may represent an alternative autophagic target in CRPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chloroquine inhibits castration-resistant prostate cancer (CRPC) growth in vivo.
Fig. 2: CAMKK2 increases autophagy in prostate cancer cells.
Fig. 3: CAMKK2 promotes autophagic flux.
Fig. 4: CAMKK2 is required for CRPC tumor growth in vivo.
Fig. 5: AR-CAMKK2-AMPK signaling increases autophagy by phosphorylating ULK1 at serine 555.
Fig. 6: High ULK1 tumor expression predicts poor patient prognosis in independent clinical cohorts of men with prostate cancer.
Fig. 7: The ULK1 inhibitor SBI-0206965 represses prostate cancer cell growth.
Fig. 8: Working model depicting how AR-CAMKK2-AMPK signaling regulates autophagy by ULK1 phosphorylation and activation in prostate cancer.

Similar content being viewed by others

References

  1. American Cancer Society. Cancer facts & figures 2020. Atlanta: American Cancer Society. 2020.

  2. Chaturvedi AP, Dehm SM. Androgen receptor dependence. Adv Exp Med Biol. 2019;1210:333–50.

    Article  CAS  PubMed  Google Scholar 

  3. Frigo DE, Howe MK, Wittmann BM, Brunner AM, Cushman I, Wang Q, et al. CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells. Cancer Res. 2011;71:528–37.

    Article  CAS  PubMed  Google Scholar 

  4. Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 2011;30:2719–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karacosta LG, Foster BA, Azabdaftari G, Feliciano DM, Edelman AM. A regulatory feedback loop between Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and the androgen receptor in prostate cancer progression. J Biol Chem. 2012;287:24832–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharma NL, Massie CE, Ramos-Montoya A, Zecchini V, Scott HE, Lamb AD, et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell. 2013;23:35–47.

    Article  CAS  PubMed  Google Scholar 

  7. Penfold L, Woods A, Muckett P, Nikitin AY, Kent TR, Zhang S, et al. CAMKK2 promotes prostate cancer independently of AMPK via increased lipogenesis. Cancer Res. 2018;78:6747–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. White MA, Tsouko E, Lin C, Rajapakshe K, Spencer JM, Wilkenfeld SR, et al. GLUT12 promotes prostate cancer cell growth and is regulated by androgens and CaMKK2 signaling. Endocr Relat Cancer. 2018;25:453–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tennakoon JB, Shi Y, Han JJ, Tsouko E, White MA, Burns AR, et al. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1alpha-mediated metabolic switch. Oncogene. 2014;33:5251–61.

    Article  CAS  PubMed  Google Scholar 

  10. Hardie DG. AMPK and autophagy get connected. EMBO J. 2011;30:634–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1–222.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang Y, Klionsky DJ. Autophagy and disease: unanswered questions. Cell Death Differ. 2020;27:858–71.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015;34:856–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: recent advances and future directions. Cancer Disco. 2019;9:1167–81.

    Article  CAS  Google Scholar 

  15. Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42.

    Article  CAS  PubMed  Google Scholar 

  16. Fabio Gabrriele CM, Sergio Comincini. Prostate cancer cells at a therapeutic gunpoint of the autophagy process. J Cancer Metastasis Treat. 2018;4.

  17. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science. 2011;333:1109–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karsli-Uzunbas G, Guo JY, Price S, Teng X, Laddha SV, Khor S, et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Disco. 2014;4:914–27.

    Article  CAS  Google Scholar 

  20. Levy JM, Thompson JC, Griesinger AM, Amani V, Donson AM, Birks DK, et al. Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors. Cancer Disco. 2014;4:773–80.

    Article  CAS  Google Scholar 

  21. Tan Q, Wang M, Yu M, Zhang J, Bristow RG, Hill RP, et al. Role of autophagy as a survival mechanism for hypoxic cells in tumors. Neoplasia. 2016;18:347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daskalaki I, Gkikas I, Tavernarakis N. Hypoxia and selective autophagy in cancer development and therapy. Front Cell Dev Biol. 2018;6:104.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shi Y, Han JJ, Tennakoon JB, Mehta FF, Merchant FA, Burns AR, et al. Androgens promote prostate cancer cell growth through induction of autophagy. Mol Endocrinol. 2013;27:280–95.

    Article  CAS  PubMed  Google Scholar 

  24. Blessing AM, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, et al. Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression. Autophagy. 2017;13:506–21.

    Article  CAS  PubMed  Google Scholar 

  25. Santanam U, Banach-Petrosky W, Abate-Shen C, Shen MM, White E, DiPaola RS. Atg7 cooperates with Pten loss to drive prostate cancer tumor growth. Genes Dev. 2016;30:399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nguyen HG, Yang JC, Kung HJ, Shi XB, Tilki D, Lara PN Jr, et al. Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene. 2014;33:4521–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang L, Wang J, Xiong H, Wu F, Lan T, Zhang Y, et al. Co-targeting hexokinase 2-mediated Warburg effect and ULK1-dependent autophagy suppresses tumor growth of PTEN- and TP53-deficiency-driven castration-resistant prostate cancer. EBioMedicine. 2016;7:50–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bennett HL, Stockley J, Fleming JT, Mandal R, O’Prey J, Ryan KM, et al. Does androgen-ablation therapy (AAT) associated autophagy have a pro-survival effect in LNCaP human prostate cancer cells? BJU Int. 2013;111:672–82.

    Article  CAS  PubMed  Google Scholar 

  29. Kaini RR, Hu CA. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells. Biochem Biophys Res Commun. 2012;425:150–6.

    Article  CAS  PubMed  Google Scholar 

  30. Lamoureux F, Thomas C, Crafter C, Kumano M, Zhang F, Davies BR, et al. Blocked autophagy using lysosomotropic agents sensitizes resistant prostate tumor cells to the novel Akt inhibitor AZD5363. Clin Cancer Res. 2013;19:833–44.

    Article  CAS  PubMed  Google Scholar 

  31. Kranzbuhler B, Salemi S, Mortezavi A, Sulser T, Eberli D. Combined N-terminal androgen receptor and autophagy inhibition increases the antitumor effect in enzalutamide sensitive and enzalutamide resistant prostate cancer cells. Prostate. 2019;79:206–14.

    Article  PubMed  Google Scholar 

  32. Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W, et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res. 2011;17:654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14:1435–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Solomon VR, Lee H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharm. 2009;625:220–33.

    Article  CAS  Google Scholar 

  35. Alers S, Loffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32:2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13:1016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim J, Kundu M, Viollet B, Guan KLAMPK. and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marcelo KL, Means AR, York B. The Ca(2+)/Calmodulin/CaMKK2 Axis: Nature’s Metabolic CaMshaft. Trends Endocrinol Metab. 2016;27:706–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Racioppi L, Means AR. Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology. J Biol Chem. 2012;287:31658–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331:456–61.

    Article  CAS  PubMed  Google Scholar 

  41. Dadwal UC, Chang ES, Sankar U. Androgen Receptor-CaMKK2 Axis in Prostate Cancer and Bone Microenvironment. Front Endocrinol (Lausanne). 2018;9:335.

    Article  Google Scholar 

  42. Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3:542–5.

    Article  CAS  PubMed  Google Scholar 

  43. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, et al. The selectivity of protein kinase inhibitors: a further update. Biochem J. 2007;408:297–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. O’Byrne SN, Scott JW, Pilotte JR, Santiago ADS, Langendorf CG, Oakhill JS, et al. In depth analysis of kinase cross screening data to identify CAMKK2 inhibitory scaffolds. Molecules. 2020;25:325

    Article  PubMed Central  Google Scholar 

  45. Kukimoto-Niino M, Yoshikawa S, Takagi T, Ohsawa N, Tomabechi Y, Terada T, et al. Crystal structure of the Ca(2)(+)/calmodulin-dependent protein kinase kinase in complex with the inhibitor STO-609. J Biol Chem. 2011;286:22570–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zachari M, Ganley IG. The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 2017;61:585–96.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim J, Guan KL. Regulation of the autophagy initiating kinase ULK1 by nutrients: roles of mTORC1 and AMPK. Cell Cycle. 2011;10:1337–8.

    Article  CAS  PubMed  Google Scholar 

  48. Lee JW, Park S, Takahashi Y, Wang HG. The association of AMPK with ULK1 regulates autophagy. PLoS ONE. 2010;5:e15394.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bach M, Larance M, James DE, Ramm G. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem J. 2011;440:283–91.

    Article  CAS  PubMed  Google Scholar 

  50. Tian W, Li W, Chen Y, Yan Z, Huang X, Zhuang H, et al. Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy. FEBS Lett. 2015;589:1847–54.

    Article  CAS  PubMed  Google Scholar 

  51. Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, Ryall KA, et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun. 2017;8:548.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Khan AS, Frigo DE. A spatiotemporal hypothesis for the regulation, role, and targeting of AMPK in prostate cancer. Nat Rev Urol. 2017;14:164–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Berglund L, Bjorling E, Oksvold P, Fagerberg L, Asplund A, Szigyarto CA, et al. A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol Cell Proteom. 2008;7:2019–27.

    Article  CAS  Google Scholar 

  54. Egan D, Kim J, Shaw RJ, Guan KL. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy. 2011;7:643–4.

    Article  PubMed  Google Scholar 

  55. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell. 2018;173:291–304 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang HY, Ma YD, Zhang Y, Cui J, Wang ZM. Elevated levels of autophagy-related marker ULK1 and mitochondrion-associated autophagy inhibitor LRPPRC are associated with biochemical progression and overall survival after androgen deprivation therapy in patients with metastatic prostate cancer. J Clin Pathol. 2017;70:383–9.

    Article  CAS  PubMed  Google Scholar 

  58. Liu B, Miyake H, Nishikawa M, Tei H, Fujisawa M. Expression profile of autophagy-related markers in localized prostate cancer: correlation with biochemical recurrence after radical prostatectomy. Urology. 2015;85:1424–30.

    Article  PubMed  Google Scholar 

  59. Egan DF, Chun MG, Vamos M, Zou H, Rong J, Miller CJ, et al. Small Molecule Inhibition of the Autophagy Kinase ULK1 and Identification of ULK1 Substrates. Mol Cell. 2015;59:285–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Loffler AS, Alers S, Dieterle AM, Keppeler H, Franz-Wachtel M, Kundu M, et al. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy. 2011;7:696–706.

    Article  PubMed  Google Scholar 

  61. White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res. 2009;15:5308–16.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mathew R, White E. Autophagy stress, and cancer metabolism: what doesn’t kill you makes you stronger. Cold Spring Harb Symp Quant Biol. 2011;76:389–96.

    Article  CAS  PubMed  Google Scholar 

  63. Chhipa RR, Wu Y, Ip C. AMPK-mediated autophagy is a survival mechanism in androgen-dependent prostate cancer cells subjected to androgen deprivation and hypoxia. Cell Signal. 2011;23:1466–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12:401–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Niture S, Ramalinga M, Kedir H, Patacsil D, Niture SS, Li J, et al. TNFAIP8 promotes prostate cancer cell survival by inducing autophagy. Oncotarget. 2018;9:26884–99.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sha J, Han Q, Chi C, Zhu Y, Pan J, Dong B, et al. Upregulated KDM4B promotes prostate cancer cell proliferation by activating autophagy. J Cell Physiol. 2020;235:2129–38.

    Article  CAS  PubMed  Google Scholar 

  67. Mortezavi A, Salemi S, Kranzbuhler B, Gross O, Sulser T, Simon HU, et al. Inhibition of autophagy significantly increases the antitumor effect of Abiraterone in prostate cancer. World J Urol. 2019;37:351–8.

    Article  CAS  PubMed  Google Scholar 

  68. Zhao F, Huang W, Zhang Z, Mao L, Han Y, Yan J, et al. Triptolide induces protective autophagy through activation of the CaMKKbeta-AMPK signaling pathway in prostate cancer cells. Oncotarget 2016;7:5366–82.

    Article  PubMed  Google Scholar 

  69. Munkley J, Rajan P, Lafferty NP, Dalgliesh C, Jackson RM, Robson CN, et al. A novel androgen-regulated isoform of the TSC2 tumour suppressor gene increases cell proliferation. Oncotarget 2014;5:131–9.

    Article  PubMed  Google Scholar 

  70. Solitro AR, MacKeigan JP. Leaving the lysosome behind: novel developments in autophagy inhibition. Future Med Chem. 2016;8:73–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Verbaanderd C, Maes H, Schaaf MB, Sukhatme VP, Pantziarka P, Sukhatme V, et al. Repurposing Drugs in Oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience. 2017;11:781.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang Y, Luo P, Leng P. Effect of Autophagy Inhibitor Hydroxychloroquine on Chemosensitivity of Castration-resistant Prostate Cancer. Sichuan Da Xue Xue Bao Yi Xue Ban. 2019;50:323–7.

    PubMed  Google Scholar 

  73. Martin KR, Celano SL, Solitro AR, Gunaydin H, Scott M, O’Hagan RC, et al. A potent and selective ULK1 inhibitor suppresses autophagy and sensitizes cancer cells to nutrient stress. iScience. 2018;8:74–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Petherick KJ, Conway OJ, Mpamhanga C, Osborne SA, Kamal A, Saxty B, et al. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J Biol Chem. 2015;290:11376–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dite TA, Langendorf CG, Hoque A, Galic S, Rebello RJ, Ovens AJ, et al. AMP-activated protein kinase selectively inhibited by the type II inhibitor SBI-0206965. J Biol Chem. 2018;293:8874–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Price DJ, Drewry DH, Schaller LT, Thompson BD, Reid PR, Maloney PR, et al. An orally available, brain-penetrant CAMKK2 inhibitor reduces food intake in rodent model. Bioorg Med Chem Lett. 2018;28:1958–63.

    Article  CAS  PubMed  Google Scholar 

  77. Asquith CRM, Godoi PH, Counago RM, Laitinen T, Scott JW, Langendorf CG, et al. 1,2,6-Thiadiazinones as novel narrow spectrum Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) inhibitors. Molecules. 2018;23:1221.

    Article  PubMed Central  Google Scholar 

  78. Profeta GS, Dos Reis CV, Santiago ADS, Godoi PHC, Fala AM, Wells CI, et al. Binding and structural analyses of potent inhibitors of the human Ca(2+)/calmodulin dependent protein kinase kinase 2 (CAMKK2) identified from a collection of commercially-available kinase inhibitors. Sci Rep. 2019;9:16452.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Haeussler M, Schonig K, Eckert H, Eschstruth A, Mianne J, Renaud JB, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17:148.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disco. 2012;2:401–4.

    Article  Google Scholar 

  81. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. Mondira Kundu, Christopher Counter and Nancy Weigel for plasmids and reagents, Kenneth Dunner, Jr. in the High Resolution Electron Microscopy Core Facility at MDACC for help with TEM, and Dr. Jeff Spencer for help with sgRNA design. This work was supported by grants from the National Institutes of Health (NIH R01CA184208 to DEF), American Cancer Society (RSG-16-084-01-TBE to DEF), an Institutional Research Grant (to DEF) and generous philanthropic contributions to The University of Texas MD Anderson Moon Shots Program (to DEF). This work was also supported by an Antje Wuelfrath Gee and Harry Gee, Jr. Family Legacy Scholarship, Robert Hazelwood Graduate Fellowship for Cancer Research (to CL) and MD Anderson Odyssey fellow supported by the CFP foundation (to AMB). Electron microscopy was performed by the CCSG-funded MDACC High Resolution Electron Microscopy Facility while histology was performed with the CCSG-funded MDACC Research Histology Core Laboratory, NIH grant P30CA016672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Frigo.

Ethics declarations

Conflict of interest

DEF has received research funding from GTx, Inc and has a familial relationship with Hummingbird Bioscience, MAIA Biotechnology, Alms Therapeutics, Hinova Pharmaceuticals and Barricade Therapeutics. AMB is currently employed by and has stock in Clovis Oncology. The other authors report no potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Blessing, A.M., Pulliam, T.L. et al. Inhibition of CAMKK2 impairs autophagy and castration-resistant prostate cancer via suppression of AMPK-ULK1 signaling. Oncogene 40, 1690–1705 (2021). https://doi.org/10.1038/s41388-021-01658-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01658-z

This article is cited by

Search

Quick links