Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tektin4 loss promotes triple-negative breast cancer metastasis through HDAC6-mediated tubulin deacetylation and increases sensitivity to HDAC6 inhibitor

Abstract

Progression of triple-negative breast cancer (TNBC) constitutes a major unresolved clinical challenge, and effective targeted therapies are lacking. Because microtubule dynamics play pivotal roles in breast cancer metastasis, we performed RNA sequencing on 245 samples from TNBC patients to characterize the landscape of microtubule-associated proteins (MAPs). Here, our transcriptome analyses revealed that low expression of one MAP, tektin4, indicated poor patient outcomes. Tektin4 loss led to a marked increase in TNBC migration, invasion, and metastasis and a decrease in microtubule stability. Mechanistically, we identified a novel microtubule-associated complex containing tektin4 and histone deacetylase 6 (HDAC6). Tektin4 loss increased the interaction between HDAC6 and α-tubulin, thus decreasing microtubule stability through HDAC6-mediated tubulin deacetylation. Significantly, we found that tektin4 loss sensitized TNBC cells, xenograft models, and patient-derived organoid models to the HDAC6-selective inhibitor ACY1215. Furthermore, tektin4 expression levels were positively correlated with microtubule stability levels in clinical samples. Together, our findings uncover a metastasis suppressor function of tektin4 and support clinical development of HDAC6 inhibition as a new therapeutic strategy for tektin4-deficient TNBC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcriptome analyses of MAPs identified tektin4 as a potential metastasis suppressor in TNBC.
Fig. 2: Tektin4 loss promotes TNBC cell invasion and tumor metastasis.
Fig. 3: Tektin4 interacts with the HDAC6 protein.
Fig. 4: Tektin4 loss decreases microtubule stability via HDAC6-mediated deacetylation.
Fig. 5: Tektin4 loss sensitizes TNBC to HDAC6 inhibition with ACY1215.
Fig. 6: Correlation between tektin4 and acetylated α-tubulin in TNBC samples.

Similar content being viewed by others

Data availability

FUSCC TNBC sequence data have been deposited in the NCBI Gene Expression Omnibus (OncoScan array; GEO: GSE118527) and Sequence Read Archive (whole exome sequencing and RNA-seq; SRP157974) [48].

References

  1. DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, et al. Breast cancer statistics, 2019. CA: Cancer J Clin. 2019;69:438–51.

    Google Scholar 

  2. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48.

    Article  CAS  Google Scholar 

  3. Howlader N, Cronin KA, Kurian AW, Andridge R. Differences in breast cancer survival by molecular subtypes in the United States. Cancer Epidemiol Biomark Prevent. 2018;27:619–26.

    Article  CAS  Google Scholar 

  4. Costa RLB, Gradishar WJ. Triple-negative breast cancer: current practice and future directions. J Oncol Pract. 2017;13:301–3.

    Article  PubMed  Google Scholar 

  5. Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13:83–117.

    Article  CAS  PubMed  Google Scholar 

  6. Yang Y, Liu M, Li D, Ran J, Gao J, Suo S, et al. CYLD regulates spindle orientation by stabilizing astral microtubules and promoting dishevelled-NuMA-dynein/dynactin complex formation. Proc Natl Acad Sci USA. 2014;111:2158–63.

    Article  CAS  PubMed  Google Scholar 

  7. Bhat KM, Setaluri V. Microtubule-associated proteins as targets in cancer chemotherapy. Clin Cancer Res. 2007;13:2849–54.

    Article  CAS  PubMed  Google Scholar 

  8. Dong X, Liu F, Sun L, Liu M, Li D, Su D, et al. Oncogenic function of microtubule end-binding protein 1 in breast cancer. J Pathol. 2010;220:361–9.

    Article  CAS  PubMed  Google Scholar 

  9. Tala XieS, Sun X, Sun X, Ran J, Zhang L, et al. Microtubule-associated protein Mdp3 promotes breast cancer growth and metastasis. Theranostics. 2014;4:1052–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang YY, Shang L, Shi ZZ, Zhang TT, Ma S, Lu CC, et al. Microtubule-associated protein 4 is an important regulator of cell invasion/migration and a potential therapeutic target in esophageal squamous cell carcinoma. Oncogene. 2016;35:4846–56.

    Article  CAS  PubMed  Google Scholar 

  11. Le Large TYS, El Hassouni B, Funel N, Kok B, Piersma SR, Pham TV, et al. Proteomic analysis of gemcitabine-resistant pancreatic cancer cells reveals that microtubule-associated protein 2 upregulation associates with taxane treatment. Therap Adv Med Oncol. 2019;11:1758835919841233.

    Google Scholar 

  12. Laks DR, Oses-Prieto JA, Alvarado AG, Nakashima J, Chand S, Azzam DB, et al. A molecular cascade modulates MAP1B and confers resistance to mTOR inhibition in human glioblastoma. Neuro-Oncology. 2018;20:764–75.

    Article  CAS  PubMed  Google Scholar 

  13. Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H, Pantel K, et al. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer cell. 2013;24:542–56.

    Article  CAS  PubMed  Google Scholar 

  14. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002;417:455–8.

    Article  CAS  PubMed  Google Scholar 

  15. Zilberman Y, Ballestrem C, Carramusa L, Mazitschek R, Khochbin S, Bershadsky A. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci. 2009;122:3531–41.

    Article  CAS  PubMed  Google Scholar 

  16. Yee AJ, Bensinger WI, Supko JG, Voorhees PM, Berdeja JG, Richardson PG, et al. Ricolinostat plus lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: a multicentre phase 1b trial. Lancet Oncol. 2016;17:1569–78.

    Article  CAS  PubMed  Google Scholar 

  17. Vogl DT, Raje N, Jagannath S, Richardson P, Hari P, Orlowski R, et al. Ricolinostat, the first selective histone deacetylase 6 inhibitor, in combination with bortezomib and dexamethasone for relapsed or refractory multiple myeloma. Clin Cancer Res. 2017;23:3307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goodson HV, Jonasson EM. Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol. 2018;10:a022608.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maccioni RB, Cambiazo V. Role of microtubule-associated proteins in the control of microtubule assembly. Physiol Rev. 1995;75:835–64.

    Article  CAS  PubMed  Google Scholar 

  20. Rodrigues-Ferreira S, Molina A, Nahmias C. Microtubule-associated tumor suppressors as prognostic biomarkers in breast cancer. Breast Cancer Res Treat. 2019;179:267–73.

    Article  PubMed  Google Scholar 

  21. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121:2750–67.

    Article  CAS  PubMed  Google Scholar 

  22. Dai JL, Burnstein KL. Two androgen response elements in the androgen receptor coding region are required for cell-specific up-regulation of receptor messenger RNA. Mol Endocrinol. 1996;10:1582–94.

    CAS  PubMed  Google Scholar 

  23. Jiang YZ, Yu KD, Peng WT, Di GH, Wu J, Liu GY, et al. Enriched variations in TEKT4 and breast cancer resistance to paclitaxel. Nat Commun. 2014;5:3802.

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Chen W, Wei W, Lou J. Oncogene TUBA1C promotes migration and proliferation in hepatocellular carcinoma and predicts a poor prognosis. Oncotarget. 2017;8:96215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gu S, Liu Y, Zhu B, Ding K, Yao TP, Chen F, et al. Loss of alpha-tubulin acetylation is associated with TGF-beta-induced epithelial-mesenchymal transition. J Biol Chem. 2016;291:5396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Gilquin B, Khochbin S, Matthias P. Two catalytic domains are required for protein deacetylation. J Biol Chem. 2006;281:2401–4.

    Article  CAS  PubMed  Google Scholar 

  27. Rey M, Irondelle M, Waharte F, Lizarraga F, Chavrier P. HDAC6 is required for invadopodia activity and invasion by breast tumor cells. Eur J Cell Biol. 2011;90:128–35.

    Article  CAS  PubMed  Google Scholar 

  28. L’Hernault SW, Rosenbaum JL. Reversal of the posttranslational modification on chlamydomonas flagellar alpha-tubulin occurs during flagellar resorption. J Cell Biol. 1985;100:457–62.

    Article  PubMed  Google Scholar 

  29. Zhao L, Zhang D, Shen Q, Jin M, Lin Z, Ma H, et al. KIAA1199 promotes metastasis of colorectal cancer cells via microtubule destabilization regulated by a PP2A/stathmin pathway. Oncogene. 2019;38:935–49.

    Article  CAS  PubMed  Google Scholar 

  30. Alesi GN, Jin L, Li D, Magliocca KR, Kang Y, Chen ZG, et al. RSK2 signals through stathmin to promote microtubule dynamics and tumor metastasis. Oncogene. 2016;35:5412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gu S, Liu Y, Zhu B, Ding K, Yao TP, Chen F, et al. Loss of alpha-tubulin acetylation is associated with tgf-beta-induced epithelial-mesenchymal transition. J Biol Chem. 2016;291:5396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li T, Zhang C, Hassan S, Liu X, Song F, Chen K, et al. Histone deacetylase 6 in cancer. J Hematol Oncol. 2018;11:111.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Valenzuela-Fernandez A, Cabrero JR, Serrador JM, Sanchez-Madrid F. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 2008;18:291–7.

    Article  CAS  PubMed  Google Scholar 

  34. Mak AB, Nixon AM, Kittanakom S, Stewart JM, Chen GI, Curak J, et al. Regulation of CD133 by HDAC6 promotes β-catenin signaling to suppress cancer cell differentiation. Cell Rep 2012;2:951–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakaya Y, Sukowati EW, Wu Y, Sheng G. RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat Cell Biol. 2008;10:765–75.

    Article  CAS  PubMed  Google Scholar 

  36. Li N, Jiang P, Du W, Wu Z, Li C, Qiao M, et al. Siva1 suppresses epithelial-mesenchymal transition and metastasis of tumor cells by inhibiting stathmin and stabilizing microtubules. Proc Natl Acad Sci USA. 2011;108:12851–6.

    Article  CAS  PubMed  Google Scholar 

  37. Tran DD, Corsa CA, Biswas H, Aft RL, Longmore GD. Temporal and spatial cooperation of Snail1 and Twist1 during epithelial-mesenchymal transition predicts for human breast cancer recurrence. Mol Cancer Res. 2011;9:1644–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Santo L, Hideshima T, Kung AL, Tseng JC, Tamang D, Yang M, et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 2012;119:2579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 2020;180:188–204.e22.

    Article  CAS  PubMed  Google Scholar 

  40. Cassimeris L, Spittle C. Regulation of microtubule-associated proteins. Int Rev Cytol. 2001;210:163–226.

    Article  CAS  PubMed  Google Scholar 

  41. Amos LA, Schlieper D. Microtubules and maps. Adv Protein Chem. 2005;71:257–98.

    Article  CAS  PubMed  Google Scholar 

  42. Chen J, Rajasekaran M, Xia H, Zhang X, Kong SN, Sekar K, et al. The microtubule-associated protein PRC1 promotes early recurrence of hepatocellular carcinoma in association with the Wnt/beta-catenin signalling pathway. Gut. 2016;65:1522–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng Z, Zhou X, Cai Y, Chen E, Zhang X, Wang O, et al. TEKT4 promotes papillary thyroid cancer cell proliferation, colony formation, and metastasis through activating PI3K/Akt pathway. Endocr Pathol. 2018;29:310–6.

    Article  PubMed  Google Scholar 

  44. Collignon J, Lousberg L, Schroeder H, Jerusalem G. Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer. 2016;8:93–107.

    CAS  PubMed  Google Scholar 

  45. Bitler BG, Wu S, Park PH, Hai Y, Aird KM, Wang Y, et al. ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat Cell Biol. 2017;19:962–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gradilone SA, Radtke BN, Bogert PS, Huang BQ, Gajdos GB, LaRusso NF. HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res. 2013;73:2259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu JR, Yu CW, Hung PY, Hsin LW, Chern JW. High-selective HDAC6 inhibitor promotes HDAC6 degradation following autophagy modulation and enhanced antitumor immunity in glioblastoma. Biochem Pharmacol. 2019;163:458–71.

    Article  CAS  PubMed  Google Scholar 

  48. Jiang YZ, Ma D, Suo C, Shi J, Xue M, Hu X, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell. 2019;35:428–40.e5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the patients at Fudan University Shanghai Cancer Center for their support and commitment to tissue collection and banking. This work was supported by grants from the National Natural Science Foundation of China (81874112, 91959207, 81922048, 81902684, 81874113), the Program of Shanghai Academic/Technology Research Leader (20XD1421100), the Fok Ying-Tong Education Foundation for College Young Teachers (171034), the Shanghai Sailing Program (19YF1409000), the Innovation Team of Ministry of Education (IRT1223) and the Shanghai Key Laboratory of Breast Cancer (12DZ2260100).

Author information

Authors and Affiliations

Authors

Contributions

LPG and XJ contributed equally to this work. YZJ and GHD were the principal investigators who conceived the study and secured funding. YZJ, GHD, and XJ coordinated and oversaw the study. LPG and XJ performed the experiments, analyzed the data, and wrote the manuscript. XYL and YSY performed the organoid experiments. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Gen-Hong Di or Yi-Zhou Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval and consent to participate

All mouse experiment procedures were reviewed and approved by the Experimental Animal Ethics Committee of Fudan University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, LP., Jin, X., Yang, YS. et al. Tektin4 loss promotes triple-negative breast cancer metastasis through HDAC6-mediated tubulin deacetylation and increases sensitivity to HDAC6 inhibitor. Oncogene 40, 2323–2334 (2021). https://doi.org/10.1038/s41388-021-01655-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01655-2

This article is cited by

Search

Quick links