Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HDAC8 promotes the dissemination of breast cancer cells via AKT/GSK-3β/Snail signals

Abstract

The mechanistic action of histone deacetylase 8 (HDAC8) in cancer motility, including epithelial-mesenchymal transition (EMT), remains largely undefined. We found that the expression of HDAC8 was upregulated in breast cancer (BC) cells and tissues as compared to the controls. Further, BC tissues had the highest values of HDAC8 expression among 31 kinds of cancers. Cellular study indicated that HDAC8 can positively regulate the dissemination and EMT of BC cells. It increased the protein stability of Snail, an important regulator of EMT, by phosphorylation of its motif 2 in serine-rich regions. There are 21 factors that have been reported to regulate the protein stability of Snail. Among them, HDAC8 can decrease the expression of GSK-3β through increasing its Ser9-phosphorylation. Mass spectrum analysis indicated that HDAC8 interact with AKT1 to decrease its acetylation while increase its phosphorylation, which further increased Ser9-phosphorylation of GSK-3β. The C-terminal of AKT1 was responsible for the interaction between HDAC8 and AKT1. Further, Lys426 was the key residue for HDAC8-regulated deacetylation of AKT1. Moreover, HDAC8/Snail axis acted as adverse prognosis factors for in vivo progression and overall survival (OS) rate of BC patients. Collectively, we found that HDAC8 can trigger the dissemination of BC cells via AKT/GSK-3β/Snail signals, which imposed that inhibition of HDAC8 is a potential approach for BC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HDAC8 is upregulated in breast cancer and correlated with poor prognosis.
Fig. 2: HDAC8 triggers the malignancy of BC cells via regulation of Snail.
Fig. 3: HDAC8 regulates protein stability of Snail in BC cells.
Fig. 4: GSK-3β is involved in HDAC8-induced stabilization of Snail.
Fig. 5: Akt is involved in HDAC8-regulated GSK-3β/Snail axis in BC cells.
Fig. 6: HDAC8/Snail axis is involved in the in vivo progression of breast cancer.
Fig. 7

Similar content being viewed by others

References

  1. Hojfeldt JW, Agger K, Helin K. Histone lysine demethylases as targets for anticancer therapy. Nat Rev Drug Disco. 2013;12:917–30.

    Article  CAS  Google Scholar 

  2. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.

    Article  CAS  PubMed  Google Scholar 

  3. Lee H, Sengupta N, Villagra A, Rezai-Zadeh N, Seto E. Histone deacetylase 8 safeguards the human ever-shorter telomeres 1B (hEST1B) protein from ubiquitin-mediated degradation. Mol Cell Biol. 2006;26:5259–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haberland M, Mokalled MH, Montgomery RL, Olson EN. Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev. 2009;23:1625–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deardorff MA, Bando M, Nakato R, Watrin E, Itoh T, Minamino M, et al. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature. 2012;489:313–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Somoza JR, Skene RJ, Katz BA, Mol C, Ho JD, Jennings AJ, et al. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure. 2004;12:1325–34.

    Article  CAS  PubMed  Google Scholar 

  7. Hu E, Chen Z, Fredrickson T, Zhu Y, Kirkpatrick R, Zhang GF, et al. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J Biol Chem. 2000;275:15254–64.

    Article  CAS  PubMed  Google Scholar 

  8. Oehme I, Deubzer HE, Wegener D, Pickert D, Linke JP, Hero B, et al. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res. 2009;15:91–99.

    Article  CAS  PubMed  Google Scholar 

  9. Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia. 2008;22:1026–34.

    Article  CAS  PubMed  Google Scholar 

  10. Hua WK, Qi J, Cai Q, Carnahan E, Ayala Ramirez M, Li L, et al. HDAC8 regulates long-term hematopoietic stem-cell maintenance under stress by modulating p53 activity. Blood. 2017;130:2619–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. von Burstin J, Eser S, Paul MC, Seidler B, Brandl M, Messer M, et al. E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology. 2009;137:361–71.

    Article  CAS  Google Scholar 

  12. Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  13. Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene. 2008;27:6958–69.

    Article  CAS  PubMed  Google Scholar 

  14. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin X, Chai G, Wu Y, Li J, Chen F, Liu J, et al. RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun. 2019;10:2065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lu L, Chen Z, Lin X, Tian L, Su Q, An P, et al. Inhibition of BRD4 suppresses the malignancy of breast cancer cells via regulation of Snail. Cell Death Differ. 2020;27:255–68.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Y, Lu L, Jiang G, Chen Z, Li J, An P, et al. Targeting CDK7 increases the stability of Snail to promote the dissemination of colorectal cancer. Cell Death Differ. 2019;26:1442–52.

    Article  CAS  PubMed  Google Scholar 

  18. Nieuwenhuis J, Brummelkamp TR. The tubulin detyrosination cycle: function and enzymes. Trends Cell Biol. 2019;29:80–92.

    Article  CAS  PubMed  Google Scholar 

  19. Vannini A, Volpari C, Gallinari P, Jones P, Mattu M, Carfi A, et al. Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8-substrate complex. EMBO Rep. 2007;8:879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lopez JE, Haynes SE, Majmudar JD, Martin BR, Fierke CA. HDAC8 substrates identified by genetically encoded active site photocrosslinking. J Am Chem Soc. 2017;139:16222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsu DS, Wang HJ, Tai SK, Chou CH, Hsieh CH, Chiu PH, et al. Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell. 2014;26:534–48.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng H, Shen M, Zha YL, Li W, Wei Y, Blanco MA, et al. PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial-mesenchymal transition and metastasis. Cancer Cell. 2014;26:358–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chang R, Zhang Y, Zhang P, Zhou Q. Snail acetylation by histone acetyltransferase p300 in lung cancer. Thorac Cancer. 2017;8:131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004;6:931–40.

    Article  CAS  PubMed  Google Scholar 

  25. Pallet N, Thervet E, Anglicheau D. Jun-N-terminal kinase signaling is involved in cyclosporine-induced epithelial phenotypic changes. J Transplantation. 2011;2012:348604.

    Google Scholar 

  26. Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, et al. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol. 2013;15:677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang K, Rodriguez-Aznar E, Yabuta N, Owen RJ, Mingot JM, Nojima H, et al. Lats2 kinase potentiates Snail1 activity by promoting nuclear retention upon phosphorylation. EMBO J. 2012;31:29–43.

    Article  PubMed  CAS  Google Scholar 

  28. Rodriguez MI, Gonzalez-Flores A, Dantzer F, Collard J, de Herreros AG, Oliver FJ. Poly(ADP-ribose)-dependent regulation of Snail1 protein stability. Oncogene. 2011;30:4365–72.

    Article  CAS  PubMed  Google Scholar 

  29. Du C, Zhang CY, Hassan S, Biswas MHU, Balaji KC. Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of Snail. Cancer Res. 2010;70:7810–9.

    Article  CAS  PubMed  Google Scholar 

  30. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharm Ther. 2015;148:114–31.

    Article  CAS  Google Scholar 

  31. Domoto T, Pyko IV, Furuta T, Miyashita K, Uehara M, Shimasaki T, et al. Glycogen synthase kinase-3beta is a pivotal mediator of cancer invasion and resistance to therapy. Cancer Sci. 2016;107:1363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan W, Liu S, Xu E, Zhang J, Zhang Y, Chen X, et al. Histone deacetylase inhibitors suppress mutant p53 transcription via histone deacetylase 8. Oncogene. 2013;32:599–609.

    Article  CAS  PubMed  Google Scholar 

  33. Park SY, Jun JA, Jeong KJ, Heo HJ, Sohn JS, Lee HY, et al. Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncol Rep. 2011;25:1677–81.

    CAS  PubMed  Google Scholar 

  34. Ecker J, Witt O, Milde T. Targeting of histone deacetylases in brain tumors. CNS Oncol. 2013;2:359–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Higuchi T, Nakayama T, Arao T, Nishio K, Yoshie O. SOX4 is a direct target gene of FRA-2 and induces expression of HDAC8 in adult T-cell leukemia/lymphoma. Blood. 2013;121:3640–9.

    Article  CAS  PubMed  Google Scholar 

  36. Qi J, Singh S, Hua WK, Cai Q, Chao SW, Li L, et al. HDAC8 inhibition specifically targets Inv(16) acute myeloid leukemic stem cells by restoring p53 acetylation. Cell Stem Cell. 2015;17:597–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Long J, Fang WY, Chang L, Gao WH, Shen Y, Jia MY, et al. Targeting HDAC3, a new partner protein of AKT in the reversal of chemoresistance in acute myeloid leukemia via DNA damage response. Leukemia. 2017;31:2761–70.

    Article  CAS  PubMed  Google Scholar 

  38. Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal. 2011;4:ra46.

    Article  CAS  PubMed  Google Scholar 

  39. Yan M, Chen C, Gong W, Yin Z, Zhou L, Chaugai S, et al. miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc Res. 2015;105:340–52.

    Article  CAS  PubMed  Google Scholar 

  40. Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med. 2007;13:324–31.

    Article  CAS  PubMed  Google Scholar 

  41. Gupta M, Ansell SM, Novak AJ, Kumar S, Kaufmann SH, Witzig TE. Inhibition of histone deacetylase overcomes rapamycin-mediated resistance in diffuse large B-cell lymphoma by inhibiting Akt signaling through mTORC2. Blood. 2009;114:2926–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol. 2019;20:156–74.

    Article  CAS  PubMed  Google Scholar 

  43. Iaconelli J, Lalonde J, Watmuff B, Liu B, Mazitschek R, Haggarty SJ, et al. Lysine deacetylation by HDAC6 regulates the kinase activity of AKT in human neural progenitor cells. ACS Chem Biol. 2017;12:2139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46:D956–63.

    Article  CAS  PubMed  Google Scholar 

  46. Gyorffy B, Surowiak P, Budczies J, Lanczky A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PloS one. 2013;8:e82241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kvaratskhelia M, Grice SF. Structural analysis of protein-RNA interactions with mass spectrometry. Methods Mol Biol. 2008;488:213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu Q, Chen ZJ, Jiang GM, Zhou Y, Yang XL, Huang HB. Epigenetic down regulation of G protein-coupled estrogen receptor (GPER) functions as a tumor suppressor in colorectal cancer. Mol Cancer. 2017;16:87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Feng Liu and Prof Junjiu Huang at School of Life Sciences, Sun Yat-sen University for technical supports.

Funding

This research was supported by the National Natural Science Foundation of China (Grant Nos. 81973343, 81673454, 81672608, and 31801197), the Fundamental Research Funds for the Central Universities (Sun Yat-sen University) (19ykzd24, 19ykpy130), the Guangdong Provincial Key Laboratory of Construction Foundation (No. 2017B030314030), the Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery (2019B030301005), and the Natural Science Foundation of Guangdong Province (No. 2020A1515010291).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: ZC, HW; Acquisition of data: PA, YP, YL, ZL, FC, JL; Analysis and interpretation of data: PA, FC, JL, HZ, ZC; Writing, review, and/or revision of the manuscript: HW, ZC, YP.

Corresponding authors

Correspondence to Zhuojia Chen or Hongsheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

Written informed consent for publication was obtained from all participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, P., Chen, F., Li, Z. et al. HDAC8 promotes the dissemination of breast cancer cells via AKT/GSK-3β/Snail signals. Oncogene 39, 4956–4969 (2020). https://doi.org/10.1038/s41388-020-1337-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1337-x

This article is cited by

Search

Quick links