Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability

Abstract

The mitochondrial HSP70 chaperone mortalin (HSPA9/GRP75) is often upregulated and mislocalized in MEK/ERK-deregulated tumors. Here, we show that mortalin depletion can selectively induce death of immortalized normal fibroblasts IMR90E1A when combined with K-RasG12V expression, but not with wild-type K-Ras expression, and that K-RasG12V-driven MEK/ERK activity is necessary for this lethality. This cell death was attenuated by knockdown or inhibition of adenine nucleotide translocase (ANT), cyclophilin D (CypD), or mitochondrial Ca2+ uniporter (MCU), which implicates a mitochondria-originated death mechanism. Indeed, mortalin depletion increased mitochondrial membrane permeability and induced cell death in KRAS-mutated human pancreatic ductal adenocarcinoma (PDAC) and colon cancer lines, which were attenuated by knockdown or inhibition of ANT, CypD, or MCU, and occurred independently of TP53 and p21CIP1. Intriguingly, JG-98, an advanced MKT-077 derivative, phenocopied the lethal effects of mortalin depletion in K-RasG12V-expressing IMR90E1A and KRAS-mutated tumor cell lines in vitro. Moreover, JG-231, a JG-98 analog with improved microsomal stability effectively suppressed the xenograft of MIA PaCa-2, a K-RasG12C-expressing human PDAC line, in athymic nude mice. These data demonstrate that oncogenic KRAS activity sensitizes cells to the effects of mortalin depletion, suggesting that mortalin has potential as a selective therapeutic target for KRAS-mutated tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mortalin depletion selectively suppresses K-RafG12V-expressing IMR90E1A cells.
Fig. 2: ANT, CypD and MCU are required for mortalin depletion to induce lethality in K-RasG12V-expressing IMR90E1A cells.
Fig. 3: Mortalin is upregulated in PDAC and its depletion suppresses PDAC cells in vitro.
Fig. 4: Increased mitochondrial permeability is associated with mitochondrial cell death induced by mortalin depletion in MIA PaCa-2 cells.
Fig. 5: TP53 and p21 are not necessary for mortalin depletion to induce mitochondrial cell death.
Fig. 6: MKT-077 derivatives suppress K-Rasmut-expressing IMR90E1A and tumor cells.
Fig. 7: JG-231 suppresses MIA PaCa-2 xenografts in mice.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper or the Supplementary Materials. JG series HSP70 modulators are available from JG under a material transfer agreement with UCSF.

References

  1. Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217–23.

    Article  CAS  PubMed  Google Scholar 

  2. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503:548–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karoulia Z, Gavathiotis E, Poulikakos PI. New perspectives for targeting RAF kinase in human cancer. Nat Rev Cancer. 2017;17:676–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kidger AM, Sipthorp J, Cook SJ. ERK1/2 inhibitors: new weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway. Pharmacol Ther. 2018;187:45–60.

    Article  CAS  PubMed  Google Scholar 

  5. Konieczkowski DJ, Johannessen CM, Garraway LA. A convergence-based framework for cancer drug resistance. Cancer Cell. 2018;33:801–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sale MJ, Cook SJ. Intrinsic and acquired resistance to MEK1/2 inhibitors in cancer. Biochem Soc Trans. 2014;42:776–83.

    Article  CAS  PubMed  Google Scholar 

  7. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575:299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99–163.

    Article  CAS  PubMed  Google Scholar 

  9. Leanza L, Zoratti M, Gulbins E, Szabo I. Mitochondrial ion channels as oncological targets. Oncogene. 2014;33:5569–81.

    Article  CAS  PubMed  Google Scholar 

  10. Chevrollier A, Loiseau D, Reynier P, Stepien G. Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. Biochim Biophys Acta. 2011;1807:562–7.

    Article  CAS  PubMed  Google Scholar 

  11. Bonora M, Pinton P. A new current for the mitochondrial permeability transition. Trends Biochem Sci. 2019;44:559–61.

    Article  CAS  PubMed  Google Scholar 

  12. He J, Ford HC, Carroll J, Ding S, Fearnley IM, Walker JE. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc Natl Acad Sci USA. 2017;114:3409–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hurst S, Baggett A, Csordas G, Sheu SS. SPG7 targets the m-AAA protease complex to process MCU for uniporter assembly, Ca(2+) influx, and regulation of mitochondrial permeability transition pore opening. J Biol Chem. 2019;294:10807–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Neginskaya MA, Solesio ME, Berezhnaya EV, Amodeo GF, Mnatsakanyan N, Jonas EA, et al. ATP synthase C-subunit-deficient mitochondria have a small cyclosporine A-sensitive channel, but lack the permeability transition pore. Cell Rep. 2019;26:11–7. e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Green DR, Galluzzi L, Kroemer G.Cell biology. Metabolic control of cell death. Science. 2014;345:1250256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Daugaard M, Rohde M, Jaattela M. The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett. 2007;581:3702–10.

    Article  CAS  PubMed  Google Scholar 

  17. Lee AS. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer. 2014;14:263–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaul SC, Deocaris CC, Wadhwa R. Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol. 2007;42:263–74.

    Article  CAS  PubMed  Google Scholar 

  19. Na Y, Kaul SC, Ryu J, Lee JS, Ahn HM, Kaul Z, et al. Stress chaperone mortalin contributes to epithelial-mesenchymal transition and cancer metastasis. Cancer Res. 2016;76:2754–65.

    Article  CAS  PubMed  Google Scholar 

  20. Rozenberg P, Kocsis J, Saar M, Prohaszka Z, Fust G, Fishelson Z. Elevated levels of mitochondrial mortalin and cytosolic HSP70 in blood as risk factors in patients with colorectal cancer. Int J Cancer. 2013;133:514–8.

    Article  CAS  PubMed  Google Scholar 

  21. Wadhwa R, Takano S, Kaur K, Deocaris CC, Pereira-Smith OM, Reddel RR, et al. Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer. 2006;118:2973–80.

    Article  CAS  PubMed  Google Scholar 

  22. Yun CO, Bhargava P, Na Y, Lee JS, Ryu J, Kaul SC, et al. Relevance of mortalin to cancer cell stemness and cancer therapy. Sci Rep. 2017;7:42016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karkhanis M, Park JI. Sp1 regulates Raf/MEK/ERK-induced p21 transcription in TP53-mutated cancer cells. Cell Signal. 2015;27:479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu PK, Hong SK, Veeranki S, Karkhanis M, Starenki D, Plaza JA, et al. A mortalin/HSPA9-mediated switch in tumor-suppressive signaling of Raf/MEK/extracellular signal-regulated kinase. Mol Cell Biol. 2013;33:4051–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu PK, Hong SK, Park JI. Steady-state levels of phosphorylated mitogen-activated protein kinase kinase 1/2 determined by mortalin/HSPA9 and protein phosphatase 1 alpha in KRAS and BRAF tumor cells. Mol Cell Biol. 2017;37:e00061–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Starenki D, Hong SK, Lloyd RV, Park JI. Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells. Oncogene. 2015;34:4624–34.

    Article  CAS  PubMed  Google Scholar 

  27. Wu PK, Hong SK, Chen W, Becker AE, Gundry RL, Lin CW, et al. Mortalin (HSPA9) facilitates BRAF-mutant tumor cell survival by suppressing ANT3-mediated mitochondrial membrane permeability. Sci Signal. 2020;13:eaay1478. pii

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosen A, Casciola-Rosen L. Macromolecular substrates for the ICE-like proteases during apoptosis. J Cell Biochem. 1997;64:50–4.

    Article  CAS  PubMed  Google Scholar 

  29. Crompton M, Barksby E, Johnson N, Capano M. Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie. 2002;84:143–52.

    Article  CAS  PubMed  Google Scholar 

  30. Halestrap AP, Connern CP, Griffiths EJ, Kerr PM. Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem. 1997;174:167–72.

    Article  CAS  PubMed  Google Scholar 

  31. Weaver JG, Tarze A, Moffat TC, Lebras M, Deniaud A, Brenner C, et al. Inhibition of adenine nucleotide translocator pore function and protection against apoptosis in vivo by an HIV protease inhibitor. J Clin Investig. 2005;115:1828–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Utkina-Sosunova IV, Niatsetskaya ZV, Sosunov SA, Ratner VI, Matsiukevich D, Ten VS. Nelfinavir inhibits intra-mitochondrial calcium influx and protects brain against hypoxic-ischemic injury in neonatal mice. PLoS ONE. 2013;8:e62448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bryant KL, Mancias JD, Kimmelman AC, Der CJ. KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci. 2014;39:91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wadhwa R, Takano S, Kaur K, Aida S, Yaguchi T, Kaul Z, et al. Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60. Biochem J. 2005;391:185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L, et al. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene. 2015;34:1475–86.

    Article  CAS  PubMed  Google Scholar 

  36. Broekemeier KM, Krebsbach RJ, Pfeiffer DR. Inhibition of the mitochondrial Ca2+ uniporter by pure and impure ruthenium red. Mol Cell Biochem. 1994;139:33–40.

    Article  CAS  PubMed  Google Scholar 

  37. Santo-Domingo J, Vay L, Hernandez-Sanmiguel E, Lobaton CD, Moreno A, Montero M, et al. The plasma membrane Na+/Ca2+ exchange inhibitor KB-R7943 is also a potent inhibitor of the mitochondrial Ca2+ uniporter. Br J Pharmacol. 2007;151:647–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 2012;149:1536–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Halestrap AP, Brenner C. The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem. 2003;10:1507–25.

    Article  CAS  PubMed  Google Scholar 

  40. Koya K, Li Y, Wang H, Ukai T, Tatsuta N, Kawakami M, et al. MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res. 1996;56:538–43.

    CAS  PubMed  Google Scholar 

  41. Rousaki A, Miyata Y, Jinwal UK, Dickey CA, Gestwicki JE, Zuiderweg ER. Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J Mol Biol. 2011;411:614–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Modica-Napolitano JS, Aprille JR. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev. 2001;49:63–70.

    Article  CAS  PubMed  Google Scholar 

  43. Maruta H, Tikoo A, Shakri R, Shishido T. The anti-RAS cancer drug MKT-077 is an F-actin cross-linker. Ann N Y Acad Sci. 1999;886:283–4.

    Article  CAS  PubMed  Google Scholar 

  44. Wadhwa R, Sugihara T, Yoshida A, Nomura H, Reddel RR, Simpson R, et al. Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res. 2000;60:6818–21.

    CAS  PubMed  Google Scholar 

  45. Miyata Y, Li X, Lee HF, Jinwal UK, Srinivasan SR, Seguin SP, et al. Synthesis and initial evaluation of YM-08, a blood-brain barrier permeable derivative of the heat shock protein 70 (Hsp70) inhibitor MKT-077, which reduces tau levels. ACS Chem Neurosci. 2013;4:930–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shao H, Li X, Moses MA, Gilbert LA, Kalyanaraman C, Young ZT, et al. Exploration of benzothiazole rhodacyanines as allosteric inhibitors of protein-protein interactions with heat shock protein 70 (Hsp70). J Med Chem. 2018;61:6163–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Humpton TJ, Alagesan B, DeNicola GM, Lu D, Yordanov GN, Leonhardt CS, et al. Oncogenic KRAS induces NIX-mediated mitophagy to promote pancreatic cancer. Cancer Discov. 2019;9:1268–87.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nagdas S, Kashatus JA, Nascimento A, Hussain SS, Trainor RE, Pollock SR, et al. Drp1 promotes KRas-driven metabolic changes to drive pancreatic tumor growth. Cell Rep. 2019;28:1845–59. e1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu M, Nguyen ND, Huang Y, Lin D, Fujimoto TN, Molkentine JM, et al. Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer. JCI Insight. 2019;5:e126915.

  50. Khalil AA, Kabapy NF, Deraz SF, Smith C. Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta. 2011;1816:89–104.

    CAS  PubMed  Google Scholar 

  51. Halestrap AP, Woodfield KY, Connern CP. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem. 1997;272:3346–54.

    Article  CAS  PubMed  Google Scholar 

  52. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell. 2013;23:302–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514:628–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hoshino A, Wang WJ, Wada S, McDermott-Roe C, Evans CS, Gosis B, et al. The ADP/ATP translocase drives mitophagy independent of nucleotide exchange. Nature. 2019;575:375–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cui X, Li Z, Piao J, Li J, Li L, Lin Z, et al. Mortalin expression in pancreatic cancer and its clinical and prognostic significance. Hum Pathol. 2017;64:171–8.

    Article  CAS  PubMed  Google Scholar 

  56. Sun J, Che SL, Piao JJ, Xu M, Chen LY, Lin ZH. Mortalin overexpression predicts poor prognosis in early stage of non-small cell lung cancer. Tumour Biol. 2017;39:1010428317695918.

    PubMed  Google Scholar 

  57. Xu M, Jin T, Chen L, Zhang X, Zhu G, Wang Q, et al. Mortalin is a distinct bio-marker and prognostic factor in serous ovarian carcinoma. Gene. 2019;696:63–71.

    Article  CAS  PubMed  Google Scholar 

  58. Bailey JM, Hendley AM, Lafaro KJ, Pruski MA, Jones NC, Alsina J, et al. p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells. Oncogene. 2016;35:4282–8.

    Article  CAS  PubMed  Google Scholar 

  59. Lu WJ, Lee NP, Kaul SC, Lan F, Poon RT, Wadhwa R, et al. Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death Differ. 2011;18:1046–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wadhwa R, Takano S, Robert M, Yoshida A, Nomura H, Reddel RR, et al. Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member. J Biol Chem. 1998;273:29586–91.

    Article  CAS  PubMed  Google Scholar 

  61. Hong SK, Yoon S, Moelling C, Arthan D, Park JI. Noncatalytic function of ERK1/2 can promote Raf/MEK/ERK-mediated growth arrest signaling. J Biol Chem. 2009;284:33006–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hong SK, Wu PK, Park JI. A cellular threshold for active ERK1/2 levels determines Raf/MEK/ERK-mediated growth arrest versus death responses. Cell Signal. 2018;42:11–20.

    Article  CAS  PubMed  Google Scholar 

  63. Starenki D, Park JI. Mitochondria-targeted nitroxide, Mito-CP, suppresses medullary thyroid carcinoma cell survival in vitro and in vivo. J Clin Endocrinol Metab. 2013;98:1529–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Yuri Lazebnik (CSHL), Richard Mulligan (Harvard Univ.), Bert Vogelstein (Johns Hopkins Univ.), and Bob Deschenes (Univ. South Florida) for IMR90E1A, pHAGE, HCT116 cell lines, and the K-RasG12V-encoding gene, respectively. We also thank former Park lab members for technical supports.

Funding

This work was supported by NIH/National Cancer Institute grant (R01CA138441) to JP. Development of HSP70 modulators was funded by NIH R01NS059690 to JG.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, PW and JP; methodology, PW, SH, DS and JP; investigation, PW, SH, DS and JP; formal Analysis, PW, SH, DS, KO and JP; writing—original draft, PW and JP; writing—review and editing, PW, JG, ST and JP; funding acquisition, JP; resources, ST, HS and JG; supervision, JP.

Corresponding author

Correspondence to Jong-In Park.

Ethics declarations

Conflict of interest

JG is an inventor on a US patent application that includes HSP70 modulators. Other authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, PK., Hong, SK., Starenki, D. et al. Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability. Oncogene 39, 4257–4270 (2020). https://doi.org/10.1038/s41388-020-1285-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1285-5

This article is cited by

Search

Quick links