Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome remodeling upon mesenchymal tumor cell fusion contributes to tumor progression and metastatic spread

Abstract

Cell fusion in tumor progression mostly refers to the merging of a cancer cell with a cell that has migration and immune escape capabilities such as macrophages. Here we show that spontaneous hybrids made from the fusion of transformed mesenchymal cells with partners from the same lineage undergo nonrecurrent large-scale genomic rearrangements, leading to the creation of highly aneuploid cells with novel phenotypic traits, including metastatic spreading capabilities. Moreover, in contrast to their parents, hybrids were the only cells able to recapitulate in vivo all features of human pleomorphic sarcomas, a rare and genetically complex mesenchymal tumor. Hybrid tumors not only displayed specific mesenchymal markers, but also combined a complex genetic profile with a highly metastatic behavior, like their human counterparts. Finally, we provide evidence that patient-derived pleomorphic sarcoma cells are inclined to spontaneous cell fusion. The resulting hybrids also gain in aggressiveness, exhibiting superior growth capacity in mouse models. Altogether, these results indicate that cell fusion has the potential to promote cancer progression by increasing growth and/or metastatic capacities, regardless of the nature of the companion cell. Moreover, such events likely occur upon sarcoma development, paving the way for better understanding of the biology, and aggressiveness of these tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hybrid fluorescence expression and DNA content.
Fig. 2: Hybrid’s genome characterization.
Fig. 3: Hybrids display higher invasive properties in vivo.
Fig. 4: Hybrids do not gain proliferative advantages but exhibit higher invasive capacities in vitro.
Fig. 5: Genetic consequences of sarcoma cell fusion.
Fig. 6: Phernotypic changes in sarcoma hybrids.
Fig. 7: IB105/106 hybrids generate tumors in NSG mice, while IB105-DsRed or IB106-GFP parental cells do not.

Similar content being viewed by others

References

  1. Massagué J, Batlle E, Gomis RR. Understanding the molecular mechanisms driving metastasis. Mol Oncol. 2017;11:3–4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Riggi N, Aguet M, Stamenkovic I. Cancer metastasis: a reappraisal of its underlying mechanisms and their relevance to treatment. Annu Rev Pathol. 2018;13:117–40.

    Article  CAS  PubMed  Google Scholar 

  3. Pachmayr E, Treese C, Stein U. Underlying mechanisms for distant metastasis—molecular biology. Visc Med. 2017;33:11–20.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Turajlic S, Sottoriva A, Graham T, Swanton C. Resolving genetic heterogeneity in cancer. Nat Rev Genet. 2019. https://doi.org/10.1038/s41576-019-0114-6.

    Article  CAS  PubMed  Google Scholar 

  5. Gordon DJ, Resio B, Pellman D. Causes and consequences of aneuploidy in cancer. Nat Rev Genet. 2012;13:189–203.

    Article  CAS  PubMed  Google Scholar 

  6. Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007;7:233–45.

    Article  CAS  PubMed  Google Scholar 

  7. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC, Park PJ, et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell. 2013;155:948–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gupta PB, Mani S, Yang J, Hartwell K, Weinberg RA. The evolving portrait of cancer metastasis. Cold Spring Harb Symp Quant Biol. 2005;70:291–7.

    Article  CAS  PubMed  Google Scholar 

  10. Gao R, Davis A, McDonald TO, Sei E, Shi X, Wang Y, et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat Genet. 2016;48:1119–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Notta F, Chan-Seng-Yue M, Lemire M, Li Y, Wilson GW, Connor AA, et al. A renewed model of pancreas cancer evolution based on genomic rearrangement patterns. Nature. 2016;538:378–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Turajlic S, Xu H, Litchfield K, Rowan A, Chambers T, Lopez JI, et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell. 2018;173:581–94.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chibon F, Lagarde P, Salas S, Pérot G, Brouste V, Tirode F, et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med. 2010;16:781–7.

    Article  CAS  PubMed  Google Scholar 

  14. Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL. Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Investig. 2004;113:913–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003;33:49–54.

    Article  CAS  PubMed  Google Scholar 

  16. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AAM, Voskuil DW et al. A gene-expression signature as a predictor of survival in breast cancer. http://dx.doi.org.gate2.inist.fr/10.1056/NEJMoa021967. 2009.

  17. Delespaul L, Merle C, Lesluyes T, Lagarde P, Le Guellec S, Pérot G, et al. Fusion-mediated chromosomal instability promotes aneuploidy patterns that resemble human tumors. Oncogene. 2019. https://doi.org/10.1038/s41388-019-0859-6.

    Article  PubMed  Google Scholar 

  18. Duelli D, Lazebnik Y. Cell fusion: a hidden enemy? Cancer Cell. 2003;3:445–8.

    Article  CAS  PubMed  Google Scholar 

  19. Rizvi AZ, Swain JR, Davies PS, Bailey AS, Decker AD, Willenbring H, et al. Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci USA. 2006;103:6321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002;416:542–5.

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003;422:897–901.

    Article  CAS  PubMed  Google Scholar 

  22. Weimann JM, Johansson CB, Trejo A, Blau HM. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol. 2003;5:959–66.

    Article  CAS  PubMed  Google Scholar 

  23. Chakraborty A, Lazova R, Davies S, Bäckvall H, Ponten F, Brash D, et al. Donor DNA in a renal cell carcinoma metastasis from a bone marrow transplant recipient. Bone Marrow Transplant. 2004;34:183–6.

    Article  CAS  PubMed  Google Scholar 

  24. Gast CE, Silk AD, Zarour L, Riegler L, Burkhart JG, Gustafson KT, et al. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv. 2018;4:eaat7828.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. LaBerge GS, Duvall E, Grasmick Z, Haedicke K, Pawelek J. A melanoma lymph node metastasis with a donor-patient hybrid genome following bone marrow transplantation: a second case of leucocyte-tumor cell hybridization in cancer metastasis. PloS ONE. 2017;12:e0168581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lazova R, Laberge GS, Duvall E, Spoelstra N, Klump V, Sznol M, et al. A melanoma brain metastasis with a donor-patient hybrid genome following bone marrow transplantation: first evidence for fusion in human cancer. PloS ONE. 2013;8:e66731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Duelli DM, Hearn S, Myers MP, Lazebnik Y. A primate virus generates transformed human cells by fusion. J Cell Biol. 2005;171:493–503.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Duelli DM, Padilla-Nash HM, Berman D, Murphy KM, Ried T, Lazebnik Y. A virus causes cancer by inducing massive chromosomal instability through cell fusion. Curr Biol. 2007;17:431–7.

    Article  CAS  PubMed  Google Scholar 

  29. Mohr M, Zaenker KS, Dittmar T. Fusion in cancer: an explanatory model for aneuploidy, metastasis formation, and drug resistance. Methods Mol Biol. 2015;1313:21–40.

    Article  PubMed  Google Scholar 

  30. Zhou X, Merchak K, Lee W, Grande JP, Cascalho M, Platt JL. Cell fusion connects oncogenesis with tumor evolution. Am J Pathol. 2015;185:2049–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Broncy L, Paterlini-Bréchot P. Cancer-associated circulating atypical cells with both epithelial and macrophage-specific markers. J Lab Precis Med. 2018;3. http://jlpm.amegroups.com/article/view/4585. Accessed 18 Jun 2019.

    Article  Google Scholar 

  32. Garvin S, Oda H, Arnesson L-G, Lindström A, Shabo I. Tumor cell expression of CD163 is associated to postoperative radiotherapy and poor prognosis in patients with breast cancer treated with breast-conserving surgery. J Cancer Res Clin Oncol. 2018;144:1253–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laberge GS, Duvall E, Haedicke K, Pawelek J. Leukocyte–cancer cell fusion—genesis of a deadly journey. Cells. 2019;8. https://doi.org/10.3390/cells8020170.

    Article  CAS  PubMed Central  Google Scholar 

  34. Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S, et al. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res. 2011;71:1497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18:43–73.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shabo I, Midtbö K, Andersson H, Åkerlund E, Olsson H, Wegman P, et al. Macrophage traits in cancer cells are induced by macrophage-cancer cell fusion and cannot be explained by cellular interaction. BMC Cancer. 2015;15:922.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang R, Sun X, Wang CY, Hu P, Chu C-Y, Liu S, et al. Spontaneous cancer-stromal cell fusion as a mechanism of prostate cancer androgen-independent progression. PloS ONE. 2012;7:e42653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xue J, Zhu Y, Sun Z, Ji R, Zhang X, Xu W, et al. Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness. BMC Cancer. 2015;15:793.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lagarde P, Pérot G, Kauffmann A, Brulard C, Dapremont V, Hostein I, et al. Mitotic checkpoints and chromosome instability are strong predictors of clinical outcome in gastrointestinal stromal tumors. Clin Cancer Res J Am Assoc Cancer Res. 2012;18:826–38.

    Article  CAS  Google Scholar 

  40. Lagarde P, Przybyl J, Brulard C, Pérot G, Pierron G, Delattre O, et al. Chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas. J Clin Oncol J Am Soc Clin Oncol. 2013;31:608–15.

    Article  CAS  Google Scholar 

  41. Lartigue L, Neuville A, Lagarde P, Brulard C, Rutkowski P, Dei Tos P, et al. Genomic index predicts clinical outcome of intermediate-risk gastrointestinal stromal tumours, providing a new inclusion criterion for imatinib adjuvant therapy. Eur J Cancer. 2015;51:75–83.

    Article  PubMed  Google Scholar 

  42. Aichel O. Über Zellverschmelzung mit qualitativ abnormer Chromosomenverteilung als Ursache der Geschwulstbildung. W. Engelmann; 1911. https://books.google.com/books?id=8Sk4AQAAMAAJ.

  43. Kerbel RS, Lagarde AE, Dennis JW, Donaghue TP. Spontaneous fusion in vivo between normal host and tumor cells: possible contribution to tumor progression and metastasis studied with a lectin-resistant mutant tumor. Mol Cell Biol. 1983;3:523–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yilmaz Y, Lazova R, Qumsiyeh M, Cooper D, Pawelek J. Donor Y chromosome in renal carcinoma cells of a female BMT recipient: visualization of putative BMT-tumor hybrids by FISH. Bone Marrow Transplant. 2005;35:1021–4.

    Article  CAS  PubMed  Google Scholar 

  45. Lazebnik Y. The shock of being united and symphiliosis. Another lesson from plants? Cell Cycle. 2014;13:2323–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Melzer C, von der Ohe J, Hass R. In vivo cell fusion between mesenchymal stroma/stem-like cells and breast cancer cells. Cancers. 2019;11. https://doi.org/10.3390/cancers11020185.

    Article  CAS  PubMed Central  Google Scholar 

  47. Searles SC, Santosa EK, Bui JD. Cell-cell fusion as a mechanism of DNA exchange in cancer. Oncotarget. 2018;9:6156–73.

    Article  PubMed  Google Scholar 

  48. Dodd RD, Mito JK, Kirsch DG. Animal models of soft-tissue sarcoma. Dis Model Mech. 2010;3:557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dodd RD, Añó L, Blum JM, Li Z, Van Mater D, Kirsch DG. Methods to generate genetically engineered mouse models of soft tissue sarcoma. Methods Mol Biol. 2015;1267:283–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hernando E, Charytonowicz E, Dudas ME, Menendez S, Matushansky I, Mills J, et al. The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med. 2007;13:748–53.

    Article  CAS  PubMed  Google Scholar 

  51. Kirsch DG, Dinulescu DM, Miller JB, Grimm J, Santiago PM, Young NP, et al. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nat Med. 2007;13:992–7.

    Article  CAS  PubMed  Google Scholar 

  52. Cancer Genome Atlas Research Network. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell. 2017;171:950–65.e28.

    Article  CAS  Google Scholar 

  53. Chibon F, Mariani O, Derré J, Malinge S, Coindre JM, Guillou L, et al. A subgroup of malignant fibrous histiocytomas is associated with genetic changes similar to those of well-differentiated liposarcomas. Cancer Genet Cytogenet. 2002;139:24–9.

    Article  CAS  PubMed  Google Scholar 

  54. Chibon F, Mariani O, Mairal A, Derré J, Coindre J-M, Terrier P, et al. The use of clustering software for the classification of comparative genomic hybridization data. an analysis of 109 malignant fibrous histiocytomas. Cancer Genet Cytogenet. 2003;141:75–8.

    Article  CAS  PubMed  Google Scholar 

  55. Gibault L, Pérot G, Chibon F, Bonnin S, Lagarde P, Terrier P, et al. New insights in sarcoma oncogenesis: a comprehensive analysis of a large series of 160 soft tissue sarcomas with complex genomics. J Pathol. 2011;223:64–71.

    Article  CAS  PubMed  Google Scholar 

  56. Guillou L, Aurias A. Soft tissue sarcomas with complex genomic profiles. Virchows Arch Int. J Pathol. 2010;456:201–17.

    CAS  Google Scholar 

  57. Mairal A, Terrier P, Chibon F, Sastre X, Lecesne A, Aurias A. Loss of chromosome 13 is the most frequent genomic imbalance in malignant fibrous histiocytomas. A comparative genomic hybridization analysis of a series of 30 cases. Cancer Genet Cytogenet. 1999;111:134–8.

    Article  CAS  PubMed  Google Scholar 

  58. Dittmar T, Zänker KS. Tissue regeneration in the chronically inflamed tumor environment: implications for cell fusion driven tumor progression and therapy resistant tumor hybrid cells. Int J Mol Sci. 2015;16:30362–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Berndt B, Zänker KS, Dittmar T. Cell fusion is a potent inducer of aneuploidy and drug resistance in tumor cell/ normal cell hybrids. Crit Rev Oncog. 2013;18:97–113.

    Article  PubMed  Google Scholar 

  60. Goldenberg DM. Horizontal transmission of malignancy by cell-cell fusion. Expert Opin Biol Ther. 2012;12 Suppl 1:S133–9.

    Article  CAS  PubMed  Google Scholar 

  61. Lu X, Kang Y. Cell fusion as a hidden force in tumor progression. Cancer Res. 2009;69:8536–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dittmar T, Schwitalla S, Seidel J, Haverkampf S, Reith G, Meyer-Staeckling S, et al. Characterization of hybrid cells derived from spontaneous fusion events between breast epithelial cells exhibiting stem-like characteristics and breast cancer cells. Clin Exp Metastasis. 2011;28:75–90.

    Article  CAS  PubMed  Google Scholar 

  63. Rachkovsky M, Sodi S, Chakraborty A, Avissar Y, Bolognia J, McNiff JM, et al. Melanoma x macrophage hybrids with enhanced metastatic potential. Clin Exp Metastasis. 1998;16:299–312.

    Article  CAS  PubMed  Google Scholar 

  64. Jemaà M, Abdallah S, Lledo G, Perrot G, Lesluyes T, Teyssier C, et al. Heterogeneity in sarcoma cell lines reveals enhanced motility of tetraploid versus diploid cells. Oncotarget. 2017;8:16669–89.

    Article  PubMed  Google Scholar 

  65. Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene. 2014;33:116–28.

    Article  CAS  PubMed  Google Scholar 

  66. Magdalou I, Lopez BS, Pasero P, Lambert SAE. The causes of replication stress and their consequences on genome stability and cell fate. Semin Cell Dev Biol. 2014;30:154–64.

    Article  CAS  PubMed  Google Scholar 

  67. Rao PN, Johnson RT. Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature. 1970;225:159–64.

    Article  CAS  PubMed  Google Scholar 

  68. Johnson RT, Rao PN. Mammalian cell fusion: induction of premature chromosome condensation in interphase nuclei. Nature. 1970;226:717–22.

    Article  CAS  PubMed  Google Scholar 

  69. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37.

    Article  CAS  PubMed  Google Scholar 

  70. Ramanathan A, Wang C, Schreiber SL. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA. 2005;102:5992–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17:1195–214.

    Article  CAS  PubMed  Google Scholar 

  72. Steele CD, Tarabichi M, Oukrif D, Webster AP, Ye H, Fittall M, et al. Undifferentiated sarcomas develop through distinct evolutionary pathways. Cancer Cell. 2019;35:441–56.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Han Z-Y, Richer W, Fréneaux P, Chauvin C, Lucchesi C, Guillemot D, et al. The occurrence of intracranial rhabdoid tumours in mice depends on temporal control of Smarcb1 inactivation. Nat Commun. 2016;7:10421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jiang E, Yan T, Xu Z, Shang Z. Tumor microenvironment and cell fusion. BioMed Res Int. 2019;2019:5013592.

    PubMed  PubMed Central  Google Scholar 

  75. Lagarde P, Brulard C, Pérot G, Mauduit O, Delespaul L, Neuville A, et al. Stable instability of sarcoma cell lines genome despite intra-tumoral heterogeneity: a genomic and transcriptomic study of sarcoma cell lines. Austin J Genet Genom Res. 2015;2:1014.

    Google Scholar 

  76. Durrieu-Gaillard S, Dumay-Odelot H, Boldina G, Tourasse NJ, Allard D, André F, et al. Regulation of RNA polymerase III transcription during transformation of human IMR90 fibroblasts with defined genetic elements. Cell Cycle. 2018;17:605–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Haurie V, Durrieu-Gaillard S, Dumay-Odelot H, Da Silva D, Rey C, Prochazkova M, et al. Two isoforms of human RNA polymerase III with specific functions in cell growth and transformation. Proc Natl Acad Sci USA. 2010;107:4176–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. Creation of human tumour cells with defined genetic elements. Nature. 1999;400:464–8.

    Article  CAS  PubMed  Google Scholar 

  79. Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B, Sabatini DM, et al. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol. 2002;22:2111–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Fondation ARC pour la recherche contre le cancer”, “the Fondation pour la recherche médicale” (FRM), and the associations “Phil’Anthrope” and “Pour Corentin”.

Author information

Authors and Affiliations

Authors

Contributions

LL, CM, and LD performed most of the experiments; PL generated hybrid and sarcoma cell lines; GP and LL performed some CGHs and immunostaining; TL performed the bioinformatics analyses; SLG and JMC did the histology analyses; LL and FC integrated and analyzed the data; LL and FC wrote the article with the help of CM; FC designed the study, supervised all the work, and obtained financial support.

Corresponding author

Correspondence to Frédéric Chibon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lartigue, L., Merle, C., Lagarde, P. et al. Genome remodeling upon mesenchymal tumor cell fusion contributes to tumor progression and metastatic spread. Oncogene 39, 4198–4211 (2020). https://doi.org/10.1038/s41388-020-1276-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1276-6

This article is cited by

Search

Quick links