Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RAF kinase dimerization: implications for drug discovery and clinical outcomes

Abstract

The RAF kinases activated by RAS GTPases regulate cell growth and division by signal transduction through the ERK cascade and mutations leading to constitutive activity are key drivers of human tumors, as are upstream activators including RAS and receptor tyrosine kinases. The development of first-generation RAF inhibitors, including vemurafenib (VEM) and dabrafenib led to initial excitement due to high response rates and profound regression of malignant melanomas carrying BRAFV600E mutations. The excitement about these unprecedented response rates, however, was tempered by tumor unresponsiveness through both intrinsic and acquired drug-resistance mechanisms. In recent years much insight into the complexity of the RAS–RAF axis has been obtained and inactivation and signal transduction mechanisms indicate that RAF dimerization is a critical step in multiple cellular contexts and plays a key role in resistance. Both homo- and hetero-dimerization of BRAF and CRAF can modulate therapeutic response and disease progression in patients treated with ATP-competitive inhibitors and are therefore highly clinically significant. Ten years after the definition of the RAF dimer interface (DIF) by crystallography, this review focuses on the implications of RAF kinase dimerization in signal transduction and for drug development, both from a classical ATP-competitive standpoint and from the perspective of new therapeutic strategies including inhibiting dimer formation. A structural perspective of the DIF, how dimerization impacts inhibitor activation and the structure-based design of next-generation RAF kinase inhibitors with unique mechanisms of action is presented. We also discuss potential fields of application for DIF inhibitors, ranging from non-V600E oncoproteins and BRAF fusions to tumors driven by aberrant receptor tyrosine kinase or RAS signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Working model of the BRAF activation cycle.
Fig. 2: Architecture of the RAF kinase dimer.
Fig. 3: Chemical structures of ATP-competitive RAF inhibitors.
Fig. 4: Cyclic DIF peptide which binds to the BRAF monomer.

Similar content being viewed by others

References

  1. Unal EB, Uhlitz F, Bluthgen N. A compendium of ERK targets. FEBS Lett. 2017;591:2607–15.

    PubMed  Google Scholar 

  2. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: mission possible? Nat Rev. 2014;13:828–51.

    CAS  Google Scholar 

  3. Little AS, Smith PD, Cook SJ. Mechanisms of acquired resistance to ERK1/2 pathway inhibitors. Oncogene. 2013;32:1207–15.

    CAS  PubMed  Google Scholar 

  4. Karoulia Z, Gavathiotis E, Poulikakos PI. New perspectives for targeting RAF kinase in human cancer. Nat Rev Cancer. 2017;17:676–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004;5:875–85.

    CAS  PubMed  Google Scholar 

  6. Terrell EM, Durrant DE, Ritt DA, Sealover NE, Sheffels E, Spencer-Smith R. Distinct binding preferences between RAS and RAF family members and the impact on oncogenic RAS signaling. Mol Cell. 2019;76:872–84.

    CAS  PubMed  Google Scholar 

  7. Dorard C, Vucak G, Baccarini M. Deciphering the RAS/ERK pathway in vivo. Biochemical Soc Trans. 2017;45:27–36.

    CAS  Google Scholar 

  8. Lavoie H, Sahmi M, Maisonneuve P, Marullo SA, Thevakumaran N, Jin T, et al. MEK drives BRAF activation through allosteric control of KSR proteins. Nature. 2018;554:549–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dankner M, Rose AAN, Rajkumar S, Siegel PM, Watson IR. Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Oncogene. 2018;37:3183–99.

    CAS  PubMed  Google Scholar 

  11. Ross JS, Wang K, Chmielecki J, Gay L, Johnson A, Chudnovsky J, et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int J Cancer. 2016;138:881–90.

    CAS  PubMed  Google Scholar 

  12. Diamond EL, Durham BH, Haroche J, Yao Z, Ma J, Parikh SA, et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov. 2016;6:154–65.

    CAS  PubMed  Google Scholar 

  13. Jain P, Fierst TM, Han HJ, Smith TE, Vakil A, Storm PB, et al. CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles. Oncogene. 2017;36:6348–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Li D, March ME, Gutierrez-Uzquiza A, Kao C, Seiler C, Pinto E, et al. ARAF recurrent mutation causes central conducting lymphatic anomaly treatable with a MEK inhibitor. Nat Med. 2019;25:1116–22.

    CAS  PubMed  Google Scholar 

  15. Rauen KA, Schoyer L, Schill L, Stronach B, Albeck J, Andresen BS, et al. Proceedings of the fifth international RASopathies symposium: when development and cancer intersect. Am J Med Genet Part A. 2018;176:2924–9.

    PubMed  Google Scholar 

  16. Weber CK, Slupsky JR, Kalmes HA, Rapp UR. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res. 2001;61:3595–8.

    CAS  PubMed  Google Scholar 

  17. Rushworth LK, Hindley AD, O’Neill E, Kolch W. Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol. 2006;26:2262–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rajakulendran T, Sahmi M, Lefrancois M, Sicheri F, Therrien M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature. 2009;461:542–5.

    CAS  PubMed  Google Scholar 

  19. Douziech M, Sahmi M, Laberge G, Therrien M. A KSR/CNK complex mediated by HYP, a novel SAM domain-containing protein, regulates RAS-dependent RAF activation in Drosophila. Genes Dev. 2006;20:807–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 2011;480:387–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dietrich S, Pircher A, Endris V, Peyrade F, Wendtner CM, Follows GA, et al. BRAF inhibition in hairy cell leukemia with low-dose vemurafenib. Blood. 2016;127:2847–55.

    CAS  PubMed  Google Scholar 

  22. Lin L, Asthana S, Chan E, Bandyopadhyay S, Martins MM, Olivas V, et al. Mapping the molecular determinants of BRAF oncogene dependence in human lung cancer. Proc Natl Acad Sci USA. 2014;111:E748–57.

    CAS  PubMed  Google Scholar 

  23. Park E, Rawson S, Li K, Kim BW, Ficarro SB, Pino GG, et al. Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Nature. 2019;575:545–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464:427–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140:209–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464:431–435.

    CAS  PubMed  Google Scholar 

  27. Herr R, Halbach S, Heizmann M, Busch H, Boerries M, Brummer T. BRAF inhibition upregulates a variety of receptor tyrosine kinases and their downstream effector Gab2 in colorectal cancer cell lines. Oncogene. 2018;37:1576–93.

    CAS  PubMed  Google Scholar 

  28. Baljuls A, Mahr R, Schwarzenau I, Muller T, Polzien L, Hekman M, et al. Single substitution within the RKTR motif impairs kinase activity but promotes dimerization of RAF kinase. J Biol Chem. 2011;286:16491–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45:927–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Röring M, Herr R, Fiala GJ, Heilmann K, Braun S, Eisenhardt AE, et al. Distinct requirement for an intact dimer interface in wild-type, V600E and kinase-dead B-Raf signalling. EMBO J. 2012;31:2629–2647.

    PubMed  PubMed Central  Google Scholar 

  31. Freeman AK, Ritt DA, Morrison DK. Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling. Mol Cell. 2013;49:751–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kordes M, Röring M, Heining C, Braun S, Hutter B, Richter D, et al. Cooperation of BRAF(F595L) and mutant HRAS in histiocytic sarcoma provides new insights into oncogenic BRAF signaling. Leukemia. 2016;30:937–46.

    CAS  PubMed  Google Scholar 

  33. Yao Z, Yaeger R, Rodrik-Outmezguine VS, Tao A, Torres NM, Chang MT, et al. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature. 2017;548:234–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Thevakumaran N, Lavoie H, Critton DA, Tebben A, Marinier A, Sicheri F, et al. Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation. Nat Struct Mol Biol. 2015;22:37–43.

    CAS  PubMed  Google Scholar 

  35. Diedrich B, Rigbolt KT, Röring M, Herr R, Kaeser-Pebernard S, Gretzmeier C, et al. Discrete cytosolic macromolecular BRAF complexes exhibit distinct activities and composition. EMBO J. 2017;36:646–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yuan J, Ng WH, Lam PYP, Wang Y, Xia H, Yap J, et al. The dimer-dependent catalytic activity of RAF family kinases is revealed through characterizing their oncogenic mutants. Oncogene. 2018;37:5719–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kohler M, Röring M, Schorch B, Heilmann K, Stickel N, Fiala GJ, et al. Activation loop phosphorylation regulates B-Raf in vivo and transformation by B-Raf mutants. EMBO J. 2016;35:143–61.

    PubMed  Google Scholar 

  38. Hu J, Stites EC, Yu H, Germino EA, Meharena HS, Stork PJS, et al. Allosteric activation of functionally asymmetric RAF kinase dimers. Cell. 2013;154:1036–46.

    CAS  PubMed  Google Scholar 

  39. Hu J, Yu H, Kornev AP, Zhao J, Filbert EL, Taylor SS, et al. Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF. Proc Natl Acad Sci USA. 2011;108:6067–72.

    CAS  PubMed  Google Scholar 

  40. Kondo Y, Ognjenovic J, Banerjee S, Karandur D, Merk A, Kulhanek K, et al. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science. 2019;366:109–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kholodenko BN. Drug resistance resulting from kinase dimerization is rationalized by thermodynamic factors describing allosteric inhibitor effects. Cell Rep. 2015;12:1939–49.

    CAS  PubMed  Google Scholar 

  42. Rukhlenko OS, Khorsand F, Krstic A, Rozanc J, Alexopoulos LG, Rauch N, et al. Dissecting RAF inhibitor resistance by structure-based modeling reveals ways to overcome oncogenic RAS signaling. Cell Syst. 2018;7:161–79. e14

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yao Z, Gao Y, Su W, Yaeger R, Tao J, Na N, et al. RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling. Nat Med. 2019;25:284–91.

    CAS  PubMed  Google Scholar 

  44. Yao Z, Torres NM, Tao A, Gao Y, Luo L, Li Q, et al. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell. 2015;28:370–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Peng SB, Henry JR, Kaufman MD, Lu WP, Smith BD, Vogeti S, et al. Inhibition of RAF Isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell. 2015;28:384–98.

    CAS  PubMed  Google Scholar 

  46. Karoulia Z, Wu Y, Ahmed TA, Xin Q, Bollard J, Krepler C, et al. An integrated model of RAF inhibitor action predicts inhibitor activity against oncogenic BRAF signaling. Cancer Cell. 2016;30:485–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Foster SA, Whalen DM, Ozen A, Wongchenko MJ, Yin J, Yen I, et al. Activation mechanism of oncogenic deletion mutations in BRAF, EGFR, and HER2. Cancer Cell. 2016;29:477–93.

    CAS  PubMed  Google Scholar 

  48. Chen SH, Zhang Y, Van Horn RD, Yin T, Buchanan S, Yadav V, et al. Oncogenic BRAF deletions that function as homodimers and are sensitive to inhibition by RAF dimer inhibitor LY3009120. Cancer Discov. 2016;6:300–315.

    CAS  PubMed  Google Scholar 

  49. Mooz J, Oberoi-Khanuja TK, Harms GS, Wang W, Jaiswal BS, Seshagiri S, et al. Dimerization of the kinase ARAF promotes MAPK pathway activation and cell migration. Sci Signal. 2014;7:ra73.

    PubMed  Google Scholar 

  50. Wu X, Yin J, Simpson J, Kim KH, Gu S, Hong JH, et al. Increased BRAF heterodimerization is the common pathogenic mechanism for noonan syndrome-associated RAF1 mutants. Mol Cell Biol. 2012;32:3872–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun Y, Alberta JA, Pilarz C, Calligaris D, Chadwick EJ, Ramkissoon SH, et al. A brain-penetrant RAF dimer antagonist for the noncanonical BRAF oncoprotein of pediatric low-grade astrocytomas. Neuro Oncol. 2017;19:774–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Botton T, Talevich E, Mishra VK, Zhang T, Shain AH, Berquet C, et al. Genetic heterogeneity of BRAF fusion kinases in melanoma affects drug responses. Cell Rep. 2019;29:573–88. e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Weinberg F, Griffin R, Frohlich M, Heining C, Braun S, Spohr C. Identification and characterization of a BRAF fusion oncoprotein with retained autoinhibitory domains. Oncogene. 2019;39(4):814–832. https://doi.org/10.1038/s41388-019-1021-1.

    Article  CAS  PubMed  Google Scholar 

  54. Hu J, Ahuja LG, Meharena HS, Kannan N, Kornev AP, Taylor SS, et al. Kinase regulation by hydrophobic spine assembly in cancer. Mol Cell Biol. 2015;35:264–76.

    PubMed  Google Scholar 

  55. Tsai CJ, Nussinov R. Allosteric activation of RAF in the MAPK signaling pathway. Curr Opin Struct Biol. 2018;53:100–106.

    CAS  PubMed  Google Scholar 

  56. Jambrina PG, Rauch N, Pilkington R, Rybakova K, Nguyen LK, Kholodenko BN. et al. Phosphorylation of RAF kinase dimers drives conformational changes that facilitate transactivation. Angew Chem Int Ed Engl. 2016;55:983–6.

    CAS  PubMed  Google Scholar 

  57. Chong H, Lee J, Guan KL. Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO J. 2001;20:3716–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 1999;18:2137–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zang M, Gong J, Luo L, Zhou J, Xiang X, Huang W, et al. Characterization of Ser338 phosphorylation for Raf-1 activation. J Biol Chem. 2008;283:31429–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, et al. Raf family kinases: old dogs have learned new tricks. Genes Cancer. 2011;2:232–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Marino KA, Sutto L, Gervasio FL. The effect of a widespread cancer-causing mutation on the inactive to active dynamics of the B-Raf kinase. J Am Chem Soc. 2015;137:5280–3.

    CAS  PubMed  Google Scholar 

  62. Jambrina PG, Bohuszewicz O, Buchete NV, Kolch W, Rosta E. Molecular mechanisms of asymmetric RAF dimer activation. Biochem Soc Trans. 2014;42:784–90.

    CAS  PubMed  Google Scholar 

  63. Takahashi M, Li Y, Dillon TJ, Kariya Y, Stork PJS. Phosphorylation of the C-Raf N region promotes Raf dimerization. Mol Cell Biol. 2017;37:1–20.

    Google Scholar 

  64. Beneker CM, Kontopidis G, Roering M, Galda S, Braun S, Brummer T, McInnes C. Design and synthesis of type IV inhibitors of B-Raf kinase that block dimerization and overcome paradoxical MEK/ERK activation. J Med Chem. 2019;62:3886–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Nielsen DS, Shepherd NE, Xu W, Lucke AJ, Stoermer MJ, Fairlie DP. Orally absorbed cyclic peptides. Chem Rev. 2017;117:8094–128.

    CAS  PubMed  Google Scholar 

  66. Gunderwala AY, Nimbvikar AA, Cope NJ, Li Z, Wang Z. Development of allosteric BRAF peptide inhibitors targeting the dimer interface of BRAF. ACS Chem Biol. 2019;14:1471–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cope NJ, Novak B, Liu Z, Cavallo M, Gunderwala AY, Connolly M. et al. Analyses of the oncogenic BRAF(D594G) variant reveal a kinase-independent function of BRAF in activating MAPK signaling. J Biol Chem. 2020;295:2407–2420.

    CAS  PubMed  Google Scholar 

  68. Sievert AJ, Lang SS, Boucher KL, Madsen PJ, Slaunwhite E, Choudhari N, et al. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc Natl Acad Sci USA. 2013;110:5957–62.

    CAS  PubMed  Google Scholar 

  69. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467:596–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mai TT, Lito P. A treatment strategy for KRAS-driven tumors. Nat Med. 2018;24:902–4.

    CAS  PubMed  Google Scholar 

  71. Eide CA, Zabriskie MS, Savage Stevens SL, Antelope O, Vellore NA, Than H, et al. Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants. Cancer Cell. 2019;36:431–43. e435

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol. 2015;16:281–98.

    CAS  PubMed  Google Scholar 

  73. Eisenhardt AE, Sprenger A, Röring M, Herr R, Weinberg F, Kohler M, et al. Phospho-proteomic analyses of B-Raf protein complexes reveal new regulatory principles. Oncotarget. 2016;7:26628–52.

    PubMed  PubMed Central  Google Scholar 

  74. Hernandez MA, Patel B, Hey F, Giblett S, Davis H, Pritchard C. Regulation of BRAF protein stability by a negative feedback loop involving the MEK-ERK pathway but not the FBXW7 tumour suppressor. Cell Signal. 2016;28:561–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Terrell EM, Morrison DK. Ras-mediated activation of the Raf family kinases. Cold Spring Harbr Perspect Med. 2019;9.

    Google Scholar 

  76. Zhang BH, Guan KL. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J. 2000;19:5429–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Agianian B, Gavathiotis E. Current insights of BRAF inhibitors in cancer. J Med Chem. 2018;61:5775–93.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

CM acknowledges support from the Melanoma Research Alliance Pilot Grant #346843 and by the National Institutes of Health through the research grant, CA191899. TB acknowledges support by the German Research Foundation (DFG) through BR3662/4–1 and a Heisenberg Professorship as well as by DKTK (JFP LOGGIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Campbell McInnes.

Ethics declarations

Conflict of interest

The authors declare the following competing financial interest(s): C.M as well as being an employee of the University of South Carolina is Founder, President and Chief Scientific Officer of PPI Pharmaceuticals, LLC however this company was not involved with any work referenced.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brummer, T., McInnes, C. RAF kinase dimerization: implications for drug discovery and clinical outcomes. Oncogene 39, 4155–4169 (2020). https://doi.org/10.1038/s41388-020-1263-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1263-y

This article is cited by

Search

Quick links