Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The proprotein convertase furin is a pro-oncogenic driver in KRAS and BRAF driven colorectal cancer

Abstract

Mutations in KRAS and/or BRAF that activate the ERK kinase are frequently found in colorectal cancer (CRC) and drive resistance to targeted therapies. Therefore, the identification of therapeutic targets that affect multiple signaling pathways simultaneously is crucial for improving the treatment of patients with KRAS or BRAF mutations. The proprotein convertase furin activates several oncogenic protein precursors involved in the ERK-MAPK pathway by endoproteolytic cleavage. Here we show that genetic inactivation of furin suppresses tumorigenic growth, proliferation, and migration in KRAS or BRAF mutant CRC cell lines but not in wild-type KRAS and BRAF cells. In a mouse xenograft model, these KRAS or BRAF mutant cells lacking furin displayed reduced growth and angiogenesis, and increased apoptosis. Mechanistically, furin inactivation prevents the processing of various protein pecursors including proIGF1R, proIR, proc-MET, proTGF-β1 and NOTCH1 leading to potent and durable ERK-MAPK pathway suppression in KRAS or BRAF mutant cells. Furthermore, we identified genes involved in activating the ERK-MAPK pathway, such as PTGS2, which are downregulated in the KRAS or BRAF mutant cells after furin inactivation but upregulated in wild-type KRAS and BRAF cells. Analysis of human colorectal tumor samples reveals a positive correlation between enhanced furin expression and KRAS or BRAF expression. These results indicate that furin plays an important role in KRAS or BRAF-associated ERK-MAPK pathway activation and tumorigenesis, providing a potential target for personalized treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Altered expression pattern of furin in KRAS or BRAF mutant CRC tumor samples.
Fig. 2: Inactivation of furin inhibits processing of multiple oncoproteins in CRC cell lines.
Fig. 3: Inactivation of furin reduces ERK/MAPK signaling pathways and regulates the expression of downstream effectors in KRAS or BRAF mutant CRC cells.
Fig. 4: Inactivation of furin inhibits malignant phenotypes of CRC cells with mutated KRAS or BRAF.
Fig. 5: Inactivation of furin causes distinct changes in gene expression of different CRC cells.
Fig. 6: Furin deficiency selectively inhibits KRAS or BRAF mutant CRC cells xenografts growth in vivo.

Data availability

All raw RNA-sequencing data can be found at the NCBI Gene Expression Omnibus (accession number: GSE130969). Raw data for figures are available as source data to the relevant figure. All other datasets generated and analyzed during the current study are available from the corresponding authors upon reasonable request. Any requests for data or materials should be addressed to JC.

References

  1. 1.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  Google Scholar 

  2. 2.

    Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173:321–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    CAS  Google Scholar 

  4. 4.

    Van Cutsem E, Köhne C-H, Hitre E, Zaluski J, Chang Chien C-R, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408–17.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol. 2011;12:594–603.

    PubMed  Google Scholar 

  6. 6.

    Creemers JWM, Khatib A-M. Knock-out mouse models of proprotein convertases: unique functions or redundancy? Front Biosci. 2008;13:4960–71.

    CAS  PubMed  Google Scholar 

  7. 7.

    Artenstein AW, Opal SM. Proprotein convertases in health and disease. N Engl J Med. 2011;365:2507–18.

    CAS  PubMed  Google Scholar 

  8. 8.

    Siegfried G, Descarpentrie J, Evrard S, Khatib AM. Proprotein convertases: Key players in inflammation-related malignancies and metastasis. Cancer Lett. 2020;473:50–61.

    PubMed  Google Scholar 

  9. 9.

    Scamuffa N, Siegfried G, Bontemps Y, Ma L, Basak A, Cherel G, et al. Selective inhibition of proprotein convertases represses the metastatic potential of human colorectal tumor cells. J Clin Investig. 2008;118:352–63.

    CAS  PubMed  Google Scholar 

  10. 10.

    Lopez de Cicco R, Bassi DE, Page R, Klein-Szanto AJ. Furin expression in squamous cell carcinomas of the oral cavity and other sites evaluated by tissue microarray technology. Acta Odontol Latinoam. 2002;15:29–37.

    CAS  PubMed  Google Scholar 

  11. 11.

    Bassi DE, Mahloogi H, Al-Saleem L, De Cicco RL, Ridge JA, Klein-Szanto AJP. Elevated furin expression in aggressive human head and neck tumors and tumor cell lines. Mol Carcinog. 2001;31:224–32.

    CAS  PubMed  Google Scholar 

  12. 12.

    Page RE, Klein-Szanto AJP, Litwin S, Nicolas E, Al-Jumaily R, Alexander P, et al. Increased expression of the pro-protein convertase furin predicts decreased survival in ovarian cancer. Cell Oncol. 2007;29:289–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Jaaks P, D’Alessandro V, Grob N, Büel S, Hajdin K, Schäfer BW, et al. The proprotein convertase furin contributes to rhabdomyosarcoma malignancy by promoting vascularization, migration and invasion. PLoS ONE. 2016;11:e0161396.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Scamuffa N, Sfaxi F, Ma J, Lalou C, Seidah N, Calvo F, et al. Prodomain of the proprotein convertase subtilisin/kexin Furin (ppFurin) protects from tumor progression and metastasis. Carcinogenesis. 2014;35:528–36.

    CAS  PubMed  Google Scholar 

  15. 15.

    Oh J, Barve M, Matthews CM, Koon EC, Heffernan TP, Fine B, et al. Phase II study of Vigil® DNA engineered immunotherapy as maintenance in advanced stage ovarian cancer. Gynecol Oncol. 2016;143:504–10.

    CAS  PubMed  Google Scholar 

  16. 16.

    Khatib A-M, Siegfried G, Prat A, Luis J, Chrétien M, Metrakos P, et al. Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells. J Biol Chem. 2001;276:30686–93.

    CAS  PubMed  Google Scholar 

  17. 17.

    Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Roebroek AJM, Taylor NA, Louagie E, Pauli I, Smeijers L, Snellinx A, et al. Limited redundancy of the proprotein convertase furin in mouse liver. J Biol Chem. 2004;279:53442–50.

    CAS  PubMed  Google Scholar 

  19. 19.

    Kopan R, Ilagan MXG. The canonical notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137:216–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Bardelli A, Corso S, Bertotti A, Hobor S, Valtorta E, Siravegna G, et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 2013;3:658–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Van Schaeybroeck S, Kalimutho M, Dunne PD, Carson R, Allen W, Jithesh PV, et al. ADAM17-dependent c-MET-STAT3 signaling mediates resistance to MEK inhibitors in KRAS mutant colorectal cancer. Cell Rep. 2014;7:1940–55.

    PubMed  Google Scholar 

  22. 22.

    Johnson P, Roberts PJ, Der CJ, Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Oncogene. 2007;26:2643–8.

    Google Scholar 

  23. 23.

    Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer. 2014;14:455–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Liu X, Jakubowski M, Hunt JL. KRAS gene mutation in colorectal cancer is correlated with increased proliferation and spontaneous apoptosis. Am J Clin Pathol. 2011;135:245–52.

    CAS  PubMed  Google Scholar 

  25. 25.

    Vartanian S, Bentley C, Brauer MJ, Li L, Shirasawa S, Sasazuki T, et al. Identification of mutant K-Ras-dependent phenotypes using a panel of isogenic cell lines. J Biol Chem. 2013;288:2403–13.

    CAS  PubMed  Google Scholar 

  26. 26.

    Liu D, Liu Z, Condouris S, Xing MM. BRAF V600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J Clin Endocrinol Metab. 2007;92:2264–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Zhang D, Wang Y, Shi Z, Liu J, Sun P, Hou X, et al. Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation. Cell Rep. 2015;10:1335–48.

    PubMed  Google Scholar 

  28. 28.

    Erdogan B, Webb DJ. Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 2017;45:229–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10:181–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Krysan K, Reckamp KL, Dalwadi H, Sharma S, Rozengurt E, Dohadwala M, et al. Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Res. 2005;65:6275–81.

    CAS  PubMed  Google Scholar 

  31. 31.

    Siegfried G, Basak A, Cromlish JA, Benjannet S, Marcinkiewicz J, Chrétien M, et al. The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis. J Clin Investig. 2003;111:1723–32.

    CAS  PubMed  Google Scholar 

  32. 32.

    Siegfried G, Basak A, Prichett-Pejic W, Scamuffa N, Ma L, Benjannet S, et al. Regulation of the stepwise proteolytic cleavage and secretion of PDGF-B by the proprotein convertases. Oncogene. 2005;24:6925–35.

    CAS  PubMed  Google Scholar 

  33. 33.

    Buck E, Gokhale PC, Koujak S, Brown E, Eyzaguirre A, Tao N, et al. Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): Rationale for cotargeting IGF-1R and IR in cancer. Mol Cancer Ther. 2010;9:2652–64.

    CAS  PubMed  Google Scholar 

  34. 34.

    Ulanet DB, Ludwig DL, Kahn CR, Hanahan D. Insulin receptor functionally enhances multistage tumor progression and conveys intrinsic resistance to IGF-1R targeted therapy. Proc Natl Acad Sci USA. 2010;107:10791–8.

    CAS  PubMed  Google Scholar 

  35. 35.

    Duguay SJ, Milewski WM, Young BD, Nakayama K, Steiner DF. Processing of wild-type and mutant proinsulin-like growth factor-IA by subtilisin-related proprotein convertases. J Biol Chem. 1997;272:6663–70.

    CAS  PubMed  Google Scholar 

  36. 36.

    Duguay SJ, Jin Y, Stein J, Duguay AN, Gardner P, Steiner DF. Post-translational processing of the insulin-like growth factor-2 precursor. Analysis of O-glycosylation and endoproteolysis. J Biol Chem. 1998;273:18443–51.

    CAS  PubMed  Google Scholar 

  37. 37.

    Tsujii M, Kawano S, Dubois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA. 1997;94:3336–40.

    CAS  PubMed  Google Scholar 

  38. 38.

    Wang D, Dubois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene. 2010;29:781–8.

    CAS  PubMed  Google Scholar 

  39. 39.

    Shimura T, Toden S, Komarova NL, Boland C, Wodarz D, Goel A. A comprehensive in vivo and mathematic modeling-based kinetic characterization for aspirin-induced chemoprevention in colorectal cancer. Carcinogenesis. 2020. https://doi.org/10.1093/carcin/bgz195.

  40. 40.

    Jin M, Long Z-W, Yang J, Lin X. Correlations of IGF-1R and COX-2 expressions with Ras and BRAF genetic mutations, clinicopathological features and prognosis of colorectal cancer patients. Pathol Oncol Res. 2018;24:45–57.

    CAS  PubMed  Google Scholar 

  41. 41.

    Tomé M, Pappalardo A, Soulet F, López JJ, Olaizola J, Leger Y, et al. Inactivation of proprotein convertases in T cells inhibits PD-1 expression and creates a favorable immune microenvironment in colorectal cancer. Cancer Res. 2019;79:5008–21.

    PubMed  Google Scholar 

  42. 42.

    Declercq J, Brouwers B, Pruniau VPEG, Stijnen P, Tuand K, Meulemans S, et al. Liver-specific inactivation of the proprotein convertase FURIN leads to increased hepatocellular carcinoma growth. Biomed Res Int. 2015;2015:148651.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Huang YH, Lin KH, Liao CH, Lai MW, Tseng YH, Yeh CT. Furin overexpression suppresses tumor growth and predicts a better postoperative disease-free survival in hepatocellular carcinoma. PLoS ONE. 2012;7:1–10.

    Google Scholar 

  44. 44.

    Kosumi K, Hamada T, Zhang S, Liu L, da Silva A, Koh H, et al. Prognostic association of PTGS2 (COX-2) over-expression according to BRAF mutation status in colorectal cancer: results from two prospective cohorts and CALGB 89803 (Alliance) trial. Eur J Cancer. 2019;111:82–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Grabocka E, Bar-Sagi D. Mutant KRAS enhances tumor cell fitness by upregulating stress granules. Cell. 2016;167:1803–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Cordova ZM, Grönholm A, Kytölä V, Taverniti V, Hämäläinen S, Aittomäki S, et al. Myeloid cell expressed proprotein convertase FURIN attenuates inflammation. Oncotarget. 2016;7:54392–404.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta—Rev Cancer. 2011;1815:197–213.

    CAS  Google Scholar 

  48. 48.

    Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity. 2019;50:924–40.

    CAS  PubMed  Google Scholar 

  49. 49.

    Chisanga D, Keerthikumar S, Pathan M, Ariyaratne D, Kalra H, Boukouris S, et al. Colorectal cancer atlas: an integrative resource for genomic and proteomic annotations from colorectal cancer cell lines and tissues. Nucleic Acids Res. 2016;44:D969–D974.

    CAS  PubMed  Google Scholar 

  50. 50.

    Louagie E, Taylor NA, Flamez D, Roebroek AJM, Bright NA, Meulemans S, et al. Role of furin in granular acidification in the endocrine pancreas: Identification of the V-ATPase subunit Ac45 as a candidate substrate. Proc Natl Acad Sci USA. 2008;105:12319–24.

    CAS  PubMed  Google Scholar 

  51. 51.

    Ramirez C, Hauser AD, Vucic EA, Bar-Sagi D. Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature. 2019;576:477–81.

    CAS  PubMed  Google Scholar 

  52. 52.

    Zhang Y, Zhou M, Wei H, Zhou H, He J, Lu Y, et al. Furin promotes epithelial-mesenchymal transition in pancreatic cancer cells via Hippo-YAP pathway. Int J Oncol. 2017;50:1352–62.

    CAS  PubMed  Google Scholar 

  53. 53.

    Couture F, Kwiatkowska A, Dory YL, Day R, Couture F, Kwiatkowska A, et al. Therapeutic uses of furin and its inhibitors: a patent review. Expert Opin Ther Pat. 2015;25:379–96.

    CAS  PubMed  Google Scholar 

  54. 54.

    Henrich S, Lindberg I, Bode W, Than ME. Proprotein convertase models based on the crystal structures of furin and kexin: Explanation of their specificity. J Mol Biol. 2005;345:211–27.

    CAS  PubMed  Google Scholar 

  55. 55.

    Susan-Resiga D, Essalmani R, Hamelin J, Asselin MC, Benjannet S, Chamberland A, et al. Furin is the major processing enzyme of the cardiac-specific growth factor bone morphogenetic protein 10. J Biol Chem. 2011;286:22785–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Ginefra P, Filippi BGH, Donovan P, Bessonnard S, Constam DB. Compartment-specific biosensors reveal a complementary subcellular distribution of bioactive furin and PC7. Cell Rep. 2018;22:2094–106.

    Google Scholar 

  57. 57.

    Hardes K, Becker GL, Lu Y, Dahms SO, Köhler S, Beyer W, et al. Novel furin inhibitors with potent anti-infectious activity. ChemMedChem. 2015;10:1218–31.

    CAS  PubMed  Google Scholar 

  58. 58.

    Löw K, Hardes K, Fedeli C, Seidah NG, Constam DB, Pasquato A, et al. A novel cell‐based sensor detecting the activity of individual basic proprotein convertases. FEBS J. 2019;286:1–24.

  59. 59.

    Dahms SO, Creemers JWM, Schaub Y, Bourenkov GP, Zögg T, Brandstetter H, et al. The structure of a furin-antibody complex explains non-competitive inhibition by steric exclusion of substrate conformers. Sci Rep. 2016;6:1–7.

    Google Scholar 

  60. 60.

    Ghisoli M, Barve M, Mennel R, Lenarsky C, Horvath S, Wallraven G, et al. Three-year follow up of GMCSF/bi-shRNA(furin) DNA-transfected autologous tumor immunotherapy (Vigil) in metastatic advanced Ewing’s Sarcoma. Mol Ther. 2016;24:1478–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Sarac MS, Cameron A, Lindberg I. The furin inhibitor hexa-D-arginine blocks the activation of Pseudomonas aeruginosa exotoxin a in vivo. Infect Immun. 2002;70:7136–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Blommaert E, Péanne R, Cherepanova NA, Rymen D, Staels F, Jaeken J, et al. Mutations in MAGT1 lead to a glycosylation disorder with a variable phenotype. Proc Natl Acad Sci. 2019;116:9865–70.

    CAS  PubMed  Google Scholar 

  63. 63.

    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, et al. Meta- and orthogonal integration of influenza ‘OMICs’ data defines a role for UBR4 in virus budding. Cell Host Microbe. 2015;18:723–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Jianjiong G, Bülent Arman A, Ugur D, Gideon D, Benjamin G, S Onur S, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:1–19.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Maria Francesca Baietti for providing help with the soft agar assay, and Rudra Kashyap for providing help with the wound healing migration assay. We would also like to thank Álvaro Cortés Calabuig for the RNA-seq data analysis. This work was supported in part by SIRIC BRIO and La Ligue Contre le Cancer to AMK, France. We acknowledge grant support from FWO Vlaanderen (Grant nr.G.0738.15) to JC. ZH was supported by a Chinese Government Scholarship (Nr. 201409110101).

Author information

Affiliations

Authors

Contributions

ZH and JC designed the research. ST provided advice on the research. SE provided human samples. ZH performed the majority of in vitro experiments. GS and AMK performed the in vivo tumorigenic assay and immunofluorescence assay. ZH and LT performed bioinformatics analysis of RNA-seq data. SM performed cell culture. ZH collected and analyzed the data and wrote the manuscript with input from JC, AMK, and GS. AMK and JC supervised the research.

Corresponding author

Correspondence to John W. M. Creemers.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Z., Thorrez, L., Siegfried, G. et al. The proprotein convertase furin is a pro-oncogenic driver in KRAS and BRAF driven colorectal cancer. Oncogene 39, 3571–3587 (2020). https://doi.org/10.1038/s41388-020-1238-z

Download citation

Further reading

Search

Quick links