Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment


GPR81 is a G-protein-coupled receptor for lactate, which is upregulated in breast cancer and plays an autocrine role to promote tumor growth by tumor cell-derived lactate. Here we asked whether lactate has any paracrine role via activation of GPR81 in cells present in tumor microenvironment to help tumor growth. First, we showed that deletion of Gpr81 suppresses breast cancer growth in a constitutive breast cancer mouse model (MMTV-PyMT-Tg). We then used a syngeneic transplant model by monitoring tumor growth from a mouse breast cancer cell line (AT-3, Gpr81-negative) implanted in mammary fat pad of wild-type mice and Gpr81-null mice. Tumor growth was suppressed in Gpr81-null mice compared with wild-type mice. There were more tumor-infiltrating T cells and MHCIIhi-immune cells in tumors from Gpr81-null mice compared with tumors from wild-type mice. RNA-seq analysis of tumors indicated involvement of immune cells and antigen presentation in Gpr81-dependent tumor growth. Antigen-presenting dendritic cells expressed Gpr81 and activation of this receptor by lactate suppressed cell-surface presentation of MHCII. Activation of Gpr81 in dendritic cells was associated with decreased cAMP, IL-6 and IL-12. These findings suggest that tumor cell-derived lactate activates GPR81 in dendritic cells and prevents presentation of tumor-specific antigens to other immune cells. This paracrine mechanism is complementary to the recently discovered autocrine mechanism in which lactate induces PD-L1 in tumor cells via activation of GPR81 in tumor cells, thus providing an effective means for tumor cells to evade immune system. As such, blockade of GPR81 signaling could boost cancer immunotherapy.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Gpr81 expression in the tumor microenvironment increases mammary gland tumor burden in a spontaneous mammary tumor mouse model.
Fig. 2: Gpr81 expression in the tumor microenvironment increases mammary gland tumor burden in a syngeneic mammary tumor mouse model.
Fig. 3: AT-3 tumors transplanted in WT mice display a suppressed immunosurveillance phenotype.
Fig. 4: Gpr81 suppresses MHC II expression in dendritic cells.
Fig. 5: Gpr81 impairs pro-inflammatory cytokine secretion from LPS-stimulated GM-DCs.
Fig. 6: Gpr81-expressing DCs alter T-cell activation, proliferation, and function.
Fig. 7: Specificity of Gpr81 in suppression of MHC II expression.


  1. 1.

    Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Google Scholar 

  3. 3.

    Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharm Ther. 2009;121:29–40.

    CAS  Google Scholar 

  4. 4.

    Halestrap AP. The SLC16 gene family – structure, role and regulation in health and disease. Mol Asp Med. 2013;34:337–49.

    CAS  Google Scholar 

  5. 5.

    Fisel P, Schaeffeler E, Schwab M. Clinical and functional relevance of the monocarboxylate transporter family in disease pathophysiology and drug therapy. Clin Transl Sci. 2018;11:352–64.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Végran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011;71:2550–60.

    PubMed  Google Scholar 

  7. 7.

    Romero-Garcia S, Moreno-Altamirano MM, Prado-Garcia H, Sánchez-García FJ. Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front Immunol. 2016;7:52.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Husain Z, Huang Y, Seth P, Sukhatme VP. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol. 2013;191:1486–95.

    CAS  PubMed  Google Scholar 

  9. 9.

    Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007;109:3812–9.

    CAS  PubMed  Google Scholar 

  10. 10.

    Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014;513:559–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 2006;107:2013–21.

    CAS  PubMed  Google Scholar 

  12. 12.

    Joanne R, Doherty, John L. Cleveland. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013;123:3685–92.

    Google Scholar 

  13. 13.

    Ge H, Weiszmann J, Reagan JD, Gupte J, Baribault H, Gyuris T, et al. Elucidation of signaling and functional activities of an orphan GPCR, GPR81. J Lipid Res. 2008;49:797–803.

    CAS  PubMed  Google Scholar 

  14. 14.

    Liu C, Wu J, Zhu J, Kuei C, Yu J, Shelton J, et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J Biol Chem. 2009;284:2811–22.

    CAS  PubMed  Google Scholar 

  15. 15.

    Ahmed K, Tunaru S, Tang C, Müller M, Gille A, Sassmann A, et al. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab. 2010;11:311–9.

    CAS  PubMed  Google Scholar 

  16. 16.

    Roland CL, Arumugam T, Deng D, Liu SH, Philip B, Gomez S, et al. Cell surface lactate receptor GPR81 is crucial for cancer cell survival. Cancer Res. 2014;74:5301–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Wagner W, Ciszewski WM, Kania KD. L- and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation. Cell Commun Signal. 2015;13:36.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lee YJ, Shin KJ, Park SA, Park KS, Park S, Heo K, et al. G-protein-coupled receptor 81 promotes a malignant phenotype in breast cancer through angiogenic factor secretion. Oncotarget. 2016;7:70898–911.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Wagner W, Kania KD, Ciszewski WM. Stimulation of lactate receptor (HCAR1) affects cellular DNA repair capacity. DNA Repair. 2017;52:49–58.

    CAS  PubMed  Google Scholar 

  20. 20.

    Wagner W, Kania KD, Blauz A, Ciszewski WM. The lactate receptor (HCAR1/GPR81) contributes to doxorubicin chemoresistance via ABCB1 transporter up-regulation in human cervical cancer HeLa cells. J Physiol Pharm. 2017;68:555–64.

    CAS  Google Scholar 

  21. 21.

    Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B, et al. Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene. 2017;36:5829–39.

    CAS  PubMed  Google Scholar 

  22. 22.

    Hoque R, Farooq A, Ghani A, Gorelick F, Mehal WZ. Lactate reduces liver and pancreatic injury in toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology. 2014;146:1763–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ranganathan P, Shanmugam A, Swafford D, Suryawanshi A, Bhattacharjee P, Hussein MS, et al. GPR81, a cell-surface receptor for lactate, regulates intestinal homeostasis and protects mice from experimental colitis. J Immunol. 2018;200:1781–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol. 1992;12:954–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Stewart TJ, Liewehr DJ, Steinberg SM, Greeneltch KM, Abrams SI. Modulating the expression of IFN regulatory factor 8 alters the protumorigenic behavior of CD11b+Gr-1+ myeloid cells. J Immunol. 2009;183:117–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Xu Y, Zhan Y, Lew AM, Naik SH, Kershaw MH. Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol. 2007;179:7577–84.

    CAS  PubMed  Google Scholar 

  27. 27.

    Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med. 1992;176:1693–702.

    CAS  PubMed  Google Scholar 

  28. 28.

    Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179:1109–18.

    CAS  PubMed  Google Scholar 

  29. 29.

    Brasel K, De Smedt T, Smith JL, Maliszewski CR. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood. 2000;96:3029–39.

    CAS  PubMed  Google Scholar 

  30. 30.

    Naik SH, Proietto AI, Wilson NS, Dakic A, Schnorrer P, Fuchsberger M, et al. Cutting edge: generation of splenic CD8+ and CD8- dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J Immunol. 2005;174:6592–7.

    CAS  PubMed  Google Scholar 

  31. 31.

    Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278:11312–9.

    CAS  PubMed  Google Scholar 

  32. 32.

    Dvorak CA, Liu C, Shelton J, Kuei C, Sutton SW, Lovenberg TW, et al. Identification of hydroxybenzoic acids as selective lactate receptor (GPR81) agonists with antilipolytic effects. ACS Med Chem Lett. 2012;3:637–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfør K, Rofstad EK, et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000;60:916–21.

    CAS  PubMed  Google Scholar 

  34. 34.

    Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8:519–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Goldman RD, Kaplan NO, Hall TC. Lactic dehydrogenase in human neoplastic tissue. Cancer Res. 1964;24:389–99.

    CAS  PubMed  Google Scholar 

  36. 36.

    Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA. 1997;94:6658–63.

    CAS  PubMed  Google Scholar 

  37. 37.

    DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 2007;104:19345–50.

    CAS  PubMed  Google Scholar 

  38. 38.

    Frauwirth KA, Thompson CB. Regulation of T lymphocyte metabolism. J Immunol. 2004;172:4661–5.

    CAS  PubMed  Google Scholar 

  39. 39.

    Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115:4742–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Wike-Hooley JL, Haveman J, Reinhold HS. The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol. 1984;2:343–66.

    CAS  PubMed  Google Scholar 

  41. 41.

    Raychaudhuri D, Bhattacharya R, Sinha BP, Liu CSC, Ghosh AR, Rahaman O, et al. Lactate induces pro-tumor reprogramming in intratumoral plasmacytoid dendritic cells. Front Immunol. 2019;10:1878.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Offermanns S. Hydroxy-carboxylic acid receptor actions in metabolism. Trends Endocrinol Metab. 2017;28:227–36.

    CAS  PubMed  Google Scholar 

  43. 43.

    Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009;69:2826–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Elangovan S, Pathania R, Ramachandran S, Ananth S, Padia RN, Lan L, et al. The niacin/butyrate receptor GPR109A suppresses mammary tumorigenesis by inhibiting cell survival. Cancer Res. 2014;74:1166–78.

    CAS  PubMed  Google Scholar 

  45. 45.

    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40:128–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Stanislaus D, Janovick JA, Jennes L, Kaiser UB, Chin WW, Conn PM. Functional and morphological characterization of four cell lines derived from GH3 cells stably transfected with gonadotropin-releasing hormone receptor complementary deoxyribonucleic acid. Endocrinology. 1994;135:2220–7.

    CAS  PubMed  Google Scholar 

Download references


This work was supported by the Welch Endowed Chair in Biochemistry, Grant no. BI-0028, at Texas Tech University Health Sciences Center (VG) and a grant from the South Plains Foundation (SR).

Author information



Corresponding author

Correspondence to Vadivel Ganapathy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brown, T.P., Bhattacharjee, P., Ramachandran, S. et al. The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene 39, 3292–3304 (2020).

Download citation

Further reading


Quick links