Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BMP9 signaling promotes the normalization of tumor blood vessels

Abstract

The presence of an immature tumor vascular network contributes to cancer dissemination and the development of resistance to therapies. Strategies to normalize the tumor vasculature are therefore of significant therapeutic interest for cancer treatments. VEGF inhibitors are used clinically to normalize tumor blood vessels. However, the time frame and dosage of these inhibitors required to achieve normalization is rather narrow, and there is a need to identify additional signaling targets to attain vascular normalization. In addition to VEGF, the endothelial-specific receptor Alk1 plays a critical role in vascular development and promotes vascular remodeling and maturation. Therefore, we sought to evaluate the effects of the Alk1 ligand BMP9 on tumor vascular formation. BMP9 overexpression in Lewis Lung Carcinoma (LLC) tumors significantly delayed tumor growth. Blood vessels in BMP9-overexpressing LLC tumors displayed markers of vascular maturation and were characterized by increased perivascular cell coverage. Tumor vasculature normalization was associated with decreased permeability and increased perfusion. These changes in vascular function in BMP9-overexpressing LLC tumors resulted in significant alterations of the tumor microenvironment, characterized by a decrease in hypoxia and an increase in immune infiltration. In conclusion, we show that BMP9 promotes vascular normalization in LLC tumors that leads to changes in the microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BMP9 overexpression inhibits tumor growth in mice.
Fig. 2: BMP9 overexpression increases vascular density, blood vessels maturation, pericyte coverage and perfusion in LLC tumors.
Fig. 3: Endothelial expression of Alk1 is required for BMP9-induced tumor growth inhibition.
Fig. 4: BMP9 overexpression in tumor cells modulates the angiogenic phenotype of ECs.
Fig. 5: BMP9 overexpression stabilizes endothelial junctions.
Fig. 6: BMP9 inhibits tumor vascular permeability in LLC tumors.
Fig. 7: BMP9-induced vascular normalization alters the tumor micro-environment.
Fig. 8: Vascular normalization in BMP9-overexpressing LLC tumors results in increased immune cell infiltration.

Similar content being viewed by others

References

  1. Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20:409–26.

    Article  CAS  PubMed  Google Scholar 

  2. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 1996;379:88–91.

    Article  CAS  PubMed  Google Scholar 

  3. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    Article  CAS  PubMed  Google Scholar 

  4. Greenberg JI, Cheresh DA. VEGF as an inhibitor of tumor vessel maturation: implications for cancer therapy. Exp Opin Biol Ther. 2009;9:1347–56.

    Article  CAS  Google Scholar 

  5. Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10:417–27.

    Article  CAS  PubMed  Google Scholar 

  6. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91:1071–121.

    Article  CAS  PubMed  Google Scholar 

  7. Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet. 2016;388:518–29.

    Article  CAS  PubMed  Google Scholar 

  8. Tolaney SM, Boucher Y, Duda DG, Martin JD, Seano G, Ancukiewicz M, et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci USA. 2015;112:14325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Batchelor TT, Sorensen AG, di Tomaso E, Zhang W-T, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11:83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ebos JML, Kerbel RS. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol. 2011;8:210–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. David L, Mallet C, Mazerbourg S, Feige J-J, Bailly S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood. 2007;109:1953–61.

    Article  CAS  PubMed  Google Scholar 

  12. Lamouille S, Mallet C, Feige J-J, Bailly S. Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood. 2002;100:4495–501.

    Article  CAS  PubMed  Google Scholar 

  13. Kim J-H, Peacock MR, George SC, Hughes CCW. BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: implications for hereditary hemorrhagic telangiectasia type II. Angiogenesis. 2012;15:497–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moya IM, Umans L, Maas E, Pereira PNG, Beets K, Francis A, et al. Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades. Dev Cell. 2012;22:501–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ricard N, Ciais D, Levet S, Subileau M, Mallet C, Zimmers TA, et al. BMP9 and BMP10 are critical for postnatal retinal vascular remodeling. Blood. 2012;119:6162–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Larrivée B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A, et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell. 2012;22:489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rostama B, Turner JE, Seavey GT, Norton CR, Gridley T, Vary CPH, et al. DLL4/Notch1 and BMP9 interdependent signaling induces human endothelial cell quiescence via P27KIP1 and thrombospondin-1. Arterioscler Thromb Vasc Biol. 2015;35:2626–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baeyens N, Larrivée B, Ola R, Hayward-Piatkowskyi B, Dubrac A, Huang B, et al. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J Cell Biol. 2016;214:807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ntumba K, Akla N, Oh SP, Eichmann A, Larrivée B. BMP9/ALK1 inhibits neovascularization in mouse models of age-related macular degeneration. Oncotarget. 2016;7:55957–69.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu T, Xie C, Ma H, Zhang S, Liang Y, Shi L, et al. Gr-1+CD11b+ cells facilitate Lewis lung cancer recurrence by enhancing neovasculature after local irradiation. Sci Rep. 2014;4:4833.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qin R-S, Zhang Z-H, Zhu N-P, Chen F, Guo Q, Hu H-W, et al. Enhanced antitumor and anti-angiogenic effects of metronomic Vinorelbine combined with Endostar on Lewis lung carcinoma. BMC Cancer. 2018;18:967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keane MP, Belperio JA, Xue YY, Burdick MD, Strieter RM. Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol. 2004;172:2853–60.

    Article  CAS  PubMed  Google Scholar 

  23. Oladipupo SS, Kabir AU, Smith C, Choi K, Ornitz DM. Impaired tumor growth and angiogenesis in mice heterozygous for Vegfr2 (Flk1). Sci Rep. 2018;8:14724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yi M, Schnitzer JE. Impaired tumor growth, metastasis, angiogenesis and wound healing in annexin. Proc Natl Acad Sci USA. 2009;106:17886–91.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Park J-S, Kim I-K, Han S, Park I, Kim C, Bae J, et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell. 2016;30:953–67.

    Article  CAS  PubMed  Google Scholar 

  26. Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol. 2004;165:35–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakahara T, Norberg SM, Shalinsky DR, Hu-Lowe DD, McDonald DM. Effect of inhibition of vascular endothelial growth factor signaling on distribution of extravasated antibodies in tumors. Cancer Res. 2006;66:1434–45.

    Article  CAS  PubMed  Google Scholar 

  28. Ouarne M, Bouvard C, Boneva G, Mallet C, Ribeiro J, Desroches-Castan A, et al. BMP9, but not BMP10, acts as a quiescence factor on tumor growth, vessel normalization and metastasis in a mouse model of breast cancer. J Exp Clin Cancer Res. 2018;37:209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu-Lowe DD, Chen E, Zhang L, Watson KD, Mancuso P, Lappin P, et al. Targeting activin receptor-like kinase 1 inhibits angiogenesis and tumorigenesis through a mechanism of action complementary to anti-VEGF therapies. Cancer Res. 2011;71:1362–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang X, Solban N, Khanna P, Callea M, Song J, Alsop DC, et al. Inhibition of ALK1 signaling with dalantercept combined with VEGFR TKI leads to tumor stasis in renal cell carcinoma. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.9621.

  31. Hawinkels LJAC, de Vinuesa AG, Paauwe M, Kruithof-de Julio M, Wiercinska E, Pardali E, et al. Activin receptor-like kinase 1 ligand trap reduces microvascular density and improves chemotherapy efficiency to various solid tumors. Clin Cancer Res. 2016;22:96–106.

    Article  CAS  PubMed  Google Scholar 

  32. Varadaraj A, Patel P, Serrao A, Bandyopadhay T, Lee NY, Jazaeri AA, et al. Epigenetic regulation of GDF2 suppresses anoikis in ovarian and breast epithelia. Neoplasia. 2015;17:826–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ye L, Kynaston H, Jiang WG. Bone morphogenetic protein-9 induces apoptosis in prostate cancer cells, the role of prostate apoptosis response-4. Mol Cancer Res. 2008;6:1594–606.

    Article  CAS  PubMed  Google Scholar 

  34. del Toro R, Prahst C, Mathivet T, Siegfried G, Kaminker JS, Larrivee B, et al. Identification and functional analysis of endothelial tip cell-enriched genes. Blood. 2010;116:4025–33.

    Article  PubMed  PubMed Central  Google Scholar 

  35. McKenney JK, Weiss SW, Folpe AL. CD31 expression in intratumoral macrophages: a potential diagnostic pitfall. Am J Surg Pathol. 2001;25:1167–73.

    Article  CAS  PubMed  Google Scholar 

  36. Berman ME, Xie Y, Muller WA. Roles of platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31) in natural killer cell transendothelial migration and beta 2 integrin activation. J Immunol. 1996;156:1515–24.

    CAS  PubMed  Google Scholar 

  37. Stacchini A, Chiarle R, Antinoro V, Demurtas A, Novero D, Palestro G. Expression of the CD31 antigen in normal B-cells and non Hodgkin’s lymphomas. J Biol Regul Homeost Agents. 2003;17:308–15.

    CAS  PubMed  Google Scholar 

  38. Douaisi M, Resop RS, Nagasawa M, Craft J, Jamieson BD, Blom B, et al. CD31, a valuable marker to identify early and late stages of T cell differentiation in the human thymus. J Immunol. 2017;198:2310–9.

    Article  CAS  PubMed  Google Scholar 

  39. Long L, Ormiston ML, Yang X, Southwood M, Gräf S, Machado RD, et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med. 2015;21:777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun Z, Li X, Massena S, Kutschera S, Padhan N, Gualandi L, et al. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. J Exp Med. 2012;209:1363–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Akla N, Viallard C, Popovic N, Lora Gil C, Sapieha P, Larrivee B. BMP (Bone Morphogenetic Protein) 9/Alk1 (activin-like kinase receptor type I) signaling prevents hyperglycemia-induced vascular permeability. Arterioscler Thromb Vasc Biol. 2018. https://doi.org/10.1161/ATVBAHA.118.310733.

  42. Ola R, Dubrac A, Han J, Zhang F, Fang JS, Larrivee B, et al. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia. Nat Commun. 2016;7:13650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koch AW, Mathivet T, Larrivée B, Tong RK, Kowalski J, Pibouin-Fragner L, et al. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell. 2011;20:33–46.

    Article  CAS  PubMed  Google Scholar 

  44. Murakami T, Felinski EA, Antonetti DA. Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J Biol Chem. 2009;284:21036–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nouvion A-L, Oubaha M, Leblanc S, Davis EC, Jastrow H, Kammerer R, et al. CEACAM1: a key regulator of vascular permeability. J Cell Sci. 2010;123:4221–30.

    Article  CAS  PubMed  Google Scholar 

  46. Ochoa-Callejero L, Pozo-Rodrigalvarez A, Martinez-Murillo R, Martinez A. Lack of adrenomedullin in mouse endothelial cells results in defective angiogenesis, enhanced vascular permeability, less metastasis, and more brain damage. Sci Rep. 2016;6:33495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chabot C, Spring K, Gratton J-P, Elchebly M, Royal I. New role for the protein tyrosine phosphatase DEP-1 in Akt activation and endothelial cell survival. Mol Cell Biol. 2009;29:241–53.

    Article  CAS  PubMed  Google Scholar 

  48. Eales KL, Hollinshead KER, Tennant DA. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis. 2016;5:e190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist. 2004;9(Suppl 5):10–17.

    Article  CAS  PubMed  Google Scholar 

  50. Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B, et al. Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am J Physiol Cell Physiol. 2015;309:C569–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kumar V, Gabrilovich DI. Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology. 2014;143:512–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Appleby SL, Mitrofan C-G, Crosby A, Hoenderdos K, Lodge K, Upton PD, et al. Bone morphogenetic protein 9 enhances lipopolysaccharide-induced leukocyte recruitment to the vascular endothelium. J Immunol. 2016;197:3302–14.

    Article  CAS  PubMed  Google Scholar 

  53. Lechner MG, Karimi SS, Barry-Holson K, Angell TE, Murphy KA, Church CH, et al. Immunogenicity of murine solid tumor models as a defining feature of in vivo behavior and response to immunotherapy. J Immunother. 2013;36:477–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Azzi S, Hebda JK, Gavard J. Vascular permeability and drug delivery in cancers. Front Oncol. 2013;3:211.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jerkic M, Letarte M. Increased endothelial cell permeability in endoglin-deficient cells. FASEB. 2015;29:3678–88.

    Article  CAS  Google Scholar 

  57. Tian H, Huang JJ, Golzio C, Gao X, Hector-Greene M, Katsanis N, et al. Endoglin interacts with VEGFR2 to promote angiogenesis. FASEB. 2018;32:2934–49.

    Article  CAS  Google Scholar 

  58. Benn A, Bredow C, Casanova I, Vukicevic S, Knaus P. VE-cadherin facilitates BMP-induced endothelial cell permeability and signaling. J Cell Sci. 2016;129:206–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brand V, Lehmann C, Umkehrer C, Bissinger S, Their M, de Wouters M, et al. Impact of selective anti-BMP9 treatment on tumor cells and tumor angiogenesis. Mol Oncol. 2016; 10:1603–20.

  60. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sceneay J, Parker BS, Smyth MJ, Möller A. Hypoxia-driven immunosuppression contributes to the pre-metastatic niche. Oncoimmunology. 2013;2:e22355.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA. 2012;109:17561–6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Huang Y, Goel S, Duda DG, Fukumura D, Jain RK. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 2013;73:2943–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 2010;70:6171–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Upton PD, Davies RJ, Trembath RC, Morrell NW. Bone morphogenetic protein (BMP) and activin type II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. J Biol Chem. 2009;284:15794–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yoong KF, McNab G, Hübscher SG, Adams DH. Vascular adhesion protein-1 and ICAM-1 support the adhesion of tumor-infiltrating lymphocytes to tumor endothelium in human hepatocellular carcinoma. J Immunol. 1998;160:3978–88.

    CAS  PubMed  Google Scholar 

  67. Arndt H, Bolanowski MA, Granger DN. Role of interleukin 8 on leucocyte-endothelial cell adhesion in intestinal inflammation. Gut. 1996;38:911–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mitrofan C-G, Appleby SL, Nash GB, Mallat Z, Chilvers ER, Upton PD, et al. Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-α-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2. J Biol Chem. 2017;292:13714–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A. Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res. 2008;14:5947–52.

    Article  CAS  PubMed  Google Scholar 

  70. Lu T, Ramakrishnan R, Altiok S, Youn J-I, Cheng P, Celis E, et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Investig. 2011;121:4015–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci. 2007;120:964–72.

    Article  CAS  PubMed  Google Scholar 

  72. David L, Mallet C, Keramidas M, Lamandé N, Gasc J-M, Dupuis-Girod S, et al. Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res. 2008;102:914–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gupta S, Gill D, Pal SK, Agarwal N. Activin receptor inhibitors–dalantercept. Curr Oncol Rep. 2015;17:14.

    Article  CAS  PubMed  Google Scholar 

  74. Mitchell D, Pobre EG, Mulivor AW, Grinberg AV, Castonguay R, Monnell TE, et al. ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther. 2010;9:379–88.

    Article  CAS  PubMed  Google Scholar 

  75. Hawinkels LJ, Garcia de Vinuesa A, Ten Dijke P. Activin receptor-like kinase 1 as a target for anti-angiogenesis therapy. Exp Opin Investig Drugs. 2013;22:1371–83.

    Article  CAS  Google Scholar 

  76. Abou-Alfa GK, Miksad RA, Tejani MA, Williamson S, Gutierrez ME, Olowokure OO, et al. A phase Ib, open-label study of dalantercept, an activin receptor-like kinase 1 ligand trap, plus sorafenib in advanced hepatocellular carcinoma. Oncologist. 2019;24:161–e70.

    Article  CAS  PubMed  Google Scholar 

  77. Voss MH, Bhatt RS, Vogelzang NJ, Fishman M, Alter RS, Rini BI, et al. A phase 2, randomized trial evaluating the combination of dalantercept plus axitinib in patients with advanced clear cell renal cell carcinoma. Cancer. 2019;125:2400–8.

    Article  CAS  PubMed  Google Scholar 

  78. de Vinuesa AG, Bocci M, Pietras K, Ten Dijke P. Targeting tumour vasculature by inhibiting activin receptor-like kinase (ALK)1 function. Biochem Soc Trans. 2016;44:1142–9.

    Article  CAS  PubMed  Google Scholar 

  79. Renier N, Adams EL, Kirst C, Wu Z, Azevedo R, Kohl J, et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell. 2016;165:1789–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cerani A, Tetreault N, Menard C, Lapalme E, Patel C, Sitaras N, et al. Neuron-derived semaphorin 3A is an early inducer of vascular permeability in diabetic retinopathy via neuropilin-1. Cell Metab. 2013;18:505–18.

    Article  CAS  PubMed  Google Scholar 

  81. Friedl J, Puhlmann M, Bartlett DL, Libutti SK, Turner EN, Gnant MFX, et al. Induction of permeability across endothelial cell monolayers by tumor necrosis factor (TNF) occurs via a tissue factor-dependent mechanism: relationship between the procoagulant and permeability effects of TNF. Blood. 2002;100:1334–9.

    Article  CAS  PubMed  Google Scholar 

  82. Duriez PJ, Wong F, Dorovini-Zis K, Shahidi R, Karsan A. A1 functions at the mitochondria to delay endothelial apoptosis in response to tumor necrosis factor. J Biol Chem. 2000;275:18099–107.

    Article  CAS  PubMed  Google Scholar 

  83. Oubaha M, Miloudi K, Dejda A, Guber V, Mawambo G, Germain M-A, et al. Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Sci Transl Med. 2016;8:362ra144.

    Article  CAS  PubMed  Google Scholar 

  84. Taguchi K, Onoe T, Yoshida T, Yamashita Y, Taniyama K, Ohdan H. Isolation of tumor endothelial cells from murine cancer. J Immunol Methods. 2019;464:105–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Paul S. Oh for kindly providing the Alk1ΔEC mice and Manuel Buscarlet for assistance with data analysis. This work was supported by an operating grant from the Cancer Research Society, and an operating grant from the Canadian Institutes of Health Research (363450). CV was supported by a post-doctoral research award from Fonds de recherche – Santé (FRQS). NA was supported by the Department of Ophthalmology of Université de Montréal Research Fund Award (FROUM), Suzanne–Veronneau–Troutmann Award (SVT) and a FRQS scholarship. CA is recipient of a Montreal Diabetes Research Center PhD Award. SL is an FRQS Research Scholar Emeritus. BL is recipient of a New Investigator Award from the Heart and Stroke Foundation of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Larrivée.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viallard, C., Audiger, C., Popovic, N. et al. BMP9 signaling promotes the normalization of tumor blood vessels. Oncogene 39, 2996–3014 (2020). https://doi.org/10.1038/s41388-020-1200-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1200-0

This article is cited by

Search

Quick links