Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MYOCD and SMAD3/SMAD4 form a positive feedback loop and drive TGF-β-induced epithelial–mesenchymal transition in non-small cell lung cancer

Abstract

Myocardin (MYOCD) promotes Smad3-mediated transforming growth factor-β (TGF-β) signaling in mouse fibroblast cells. Our previous studies show that TGF-β/SMADs signaling activation enhances epithelial–mesenchymal transition (EMT) in human non-small cell lung cancer (NSCLC) cells. However, whether and how MYOCD contributes to TGF-β-induced EMT of NSCLC cells are poorly elucidated. Here, we found that TGF-β-induced EMT was accompanied by increased MYOCD expression. Interestingly, MYOCD overexpression augmented EMT and invasion of NSCLC cells induced by TGF-β, whereas knockdown of MYOCD expression attenuated these effects. Overexpression and knockdown of MYOCD resulted in the upregulation and downregulation of TGF-β-induced Snail mRNA, respectively. Moreover, MYOCD overexpression promoted TGF-β-stimulated NSCLC cell metastasis in vivo. MYOCD was highly expressed and positively correlated with Snail in metastatic NSCLC tissues. Mechanistically, MYOCD directly interacted with SMAD3 and sustained the formation of TGF-β-induced nuclear SMAD3/SMAD4 complex, facilitating TGF-β/SMAD3-induced transactivation of Snail. Importantly, MYOCD was transcriptionally activated by TGF-β-induced SMAD3/SMAD4 complex and CRISPR/Cas9-mediated silencing of SMAD3/SMAD4 led to a reduction in MYOCD mRNA expression. Taken together, our findings indicate that MYOCD promotes TGF-β-induced EMT and metastasis of NSCLC and identify a positive feedback loop between MYOCD and SMAD3/SMAD4 driving TGF-β-induced EMT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MYOCD expression is increased in TGF-β-induced EMT of NSCLC cells.
Fig. 2: MYOCD is transcriptionally activated by TGF-β-induced SMAD3/4 complex in NSCLC cells.
Fig. 3: MYOCD enhances the sustained activation of TGF-β-induced nuclear SMAD3/SMAD4 complex.
Fig. 4: MYOCD promotes TGF-β/SMAD3-induced transcriptional activity by interacting with SMAD3.
Fig. 5: MYOCD knockdown impairs TGF-β1-activated recruitment of p-SMAD3 to the Snail promoter, and Snail knockdown inhibits TGF-β1-induced migration and invasion of A549 cells.
Fig. 6: MYOCD overexpression boosts TGF-β-induced EMT and invasion of NSCLC cells.
Fig. 7: MYOCD overexpression promotes TGF-β-stimulated NSCLC cell metastasis in vivo.
Fig. 8: MYOCD expression is positively correlated with Snail expression in metastatic NSCLC tissues.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer. 2014;14:535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127:679–95.

    Article  CAS  PubMed  Google Scholar 

  4. Bunn PA Jr, Thatcher N. Systemic treatment for advanced (stage IIIb/IV) non-small cell lung cancer: more treatment options; more things to consider. Introduction. Oncologist. 2008;13 (Suppl 1):1–4.

    Article  PubMed  Google Scholar 

  5. Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–9.

    Article  CAS  PubMed  Google Scholar 

  6. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  8. Liu RY, Zeng Y, Lei Z, Wang L, Yang H, Liu Z, et al. JAK/STAT3 signaling is required for TGF-beta-induced epithelial-mesenchymal transition in lung cancer cells. Int J Oncol. 2014;44:1643–51.

    Article  CAS  PubMed  Google Scholar 

  9. Yang H, Wang L, Zhao J, Chen Y, Lei Z, Liu X, et al. TGF-beta-activated SMAD3/4 complex transcriptionally upregulates N-cadherin expression in non-small cell lung cancer. Lung Cancer. 2015;87:249–57.

    Article  PubMed  Google Scholar 

  10. Wang L, Yang H, Lei Z, Zhao J, Chen Y, Chen P, et al. Repression of TIF1gamma by SOX2 promotes TGF-beta-induced epithelial-mesenchymal transition in non-small-cell lung cancer. Oncogene. 2016;35:867–77.

    Article  CAS  PubMed  Google Scholar 

  11. Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007;8:970–82.

    Article  CAS  PubMed  Google Scholar 

  12. Massague J. TGFbeta in cancer. Cell. 2008;134:215–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13:616–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Shi J, Chai K, Ying X, Zhou BP. The role of snail in EMT and tumorigenesis. Curr Cancer Drug Targets. 2013;13:963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massague J. Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell. 2006;125:929–41.

    Article  CAS  PubMed  Google Scholar 

  16. Deheuninck J, Luo K. Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res. 2009;19:47–57.

    Article  CAS  PubMed  Google Scholar 

  17. Janknecht R, Wells NJ, Hunter T. TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev. 1998;12:2114–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell. 2001;105:851–62.

    Article  CAS  PubMed  Google Scholar 

  19. Wang DZ, Olson EN. Control of smooth muscle development by the myocardin family of transcriptional coactivators. Curr Opin Genet Dev. 2004;14:558–66.

    Article  CAS  PubMed  Google Scholar 

  20. McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest. 2006;116:36–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sward K, Stenkula KG, Rippe C, Alajbegovic A, Gomez MF, Albinsson S. Emerging roles of the myocardin family of proteins in lipid and glucose metabolism. J Physiol. 2016;594:4741–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ackers-Johnson M, Talasila A, Sage AP, Long X, Bot I, Morrell NW, et al. Myocardin regulates vascular smooth muscle cell inflammatory activation and disease. Arterioscler Thromb Vasc Biol. 2015;35:817–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xia XD, Zhou Z, Yu XH, Zheng XL, Tang CK. Myocardin: a novel player in atherosclerosis. Atherosclerosis. 2017;257:266–78.

    Article  CAS  PubMed  Google Scholar 

  24. Perot G, Derre J, Coindre JM, Tirode F, Lucchesi C, Mariani O, et al. Strong smooth muscle differentiation is dependent on myocardin gene amplification in most human retroperitoneal leiomyosarcomas. Cancer Res. 2009;69:2269–78.

    Article  CAS  PubMed  Google Scholar 

  25. Kimura Y, Morita T, Hayashi K, Miki T, Sobue K. Myocardin functions as an effective inducer of growth arrest and differentiation in human uterine leiomyosarcoma cells. Cancer Res. 2010;70:501–11.

    Article  CAS  PubMed  Google Scholar 

  26. Qiu P, Ritchie RP, Fu Z, Cao D, Cumming J, Miano JM, et al. Myocardin enhances Smad3-mediated transforming growth factor-beta1 signaling in a CArG box-independent manner: Smad-binding element is an important cis element for SM22alpha transcription in vivo. Circ Res. 2005;97:983–91.

    Article  CAS  PubMed  Google Scholar 

  27. Molchadsky A, Shats I, Goldfinger N, Pevsner-Fischer M, Olson M, Rinon A, et al. p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PLoS ONE. 2008;3:e3707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kurpinski K, Lam H, Chu J, Wang A, Kim A, Tsay E, et al. Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells. 2010;28:734–42.

    Article  CAS  PubMed  Google Scholar 

  29. Sartor MA, Mahavisno V, Keshamouni VG, Cavalcoli J, Wright Z, Karnovsky A, et al. ConceptGen: a gene set enrichment and gene set relation mapping tool. Bioinformatics. 2010;26:456–63.

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, Tong X, Zhou Z, Wang S, Lei Z, Zhang T, et al. Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-beta-induced epithelial-mesenchymal transition and metastasis by controlling TIF1gamma in non-small cell lung cancer. Mol Cancer. 2018;17:140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Donatelli SS, Zhou JM, Gilvary DL, Eksioglu EA, Chen X, Cress WD, et al. TGF-beta-inducible microRNA-183 silences tumor-associated natural killer cells. Proc Natl Acad Sci USA. 2014;111:4203–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marwitz S, Depner S, Dvornikov D, Merkle R, Szczygiel M, Muller-Decker K. et al. Downregulation of the TGFbeta pseudoreceptor BAMBI in non-small cell lung cancer enhances TGFbeta signaling and invasion. Cancer Res. 2016;76:3785–801.

    Article  CAS  PubMed  Google Scholar 

  33. Macias MJ, Martin-Malpartida P, Massague J. Structural determinants of Smad function in TGF-beta signaling. Trends Biochem Sci. 2015;40:296–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mitra P, Kalailingam P, Tan HB, Thanabalu T. Overexpression of GRB2 enhances epithelial to mesenchymal transition of A549 cells by upregulating SNAIL expression. Cells. 2018;7:97.

  35. Wu J, He Z, Yang XM, Li KL, Wang DL, Sun FL. RCCD1 depletion attenuates TGF-beta-induced EMT and cell migration by stabilizing cytoskeletal microtubules in NSCLC cells. Cancer Lett. 2017;400:18–29.

    Article  CAS  PubMed  Google Scholar 

  36. Smith AP, Verrecchia A, Faga G, Doni M, Perna D, Martinato F, et al. A positive role for Myc in TGFbeta-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene. 2009;28:422–30.

    Article  CAS  PubMed  Google Scholar 

  37. Morita T, Mayanagi T, Sobue K. Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling. J Cell Biol. 2007;179:1027–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morita T, Hayashi K. Tumor progression is mediated by thymosin-beta4 through a TGFbeta/MRTF signaling axis. Mol Cancer Res. 2018;16:880–93.

    Article  CAS  PubMed  Google Scholar 

  39. O’Connor JW, Riley PN, Nalluri SM, Ashar PK, Gomez EW. Matrix rigidity mediates TGFbeta1-induced epithelial-myofibroblast transition by controlling cytoskeletal organization and MRTF-A localization. J Cell Physiol. 2015;230:1829–39.

    Article  CAS  PubMed  Google Scholar 

  40. Chen J, Yin H, Jiang Y, Radhakrishnan SK, Huang ZP, Li J, et al. Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation. Arterioscler Thromb Vasc Biol. 2011;31:368–75.

    Article  CAS  PubMed  Google Scholar 

  41. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA. 2004;101:9309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA. 2004;101:811–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Milyavsky M, Shats I, Cholostoy A, Brosh R, Buganim Y, Weisz L, et al. Inactivation of myocardin and p16 during malignant transformation contributes to a differentiation defect. Cancer Cell. 2007;11:133–46.

    Article  CAS  PubMed  Google Scholar 

  44. Xie WB, Li Z, Miano JM, Long X, Chen SY. Smad3-mediated myocardin silencing: a novel mechanism governing the initiation of smooth muscle differentiation. J Biol Chem. 2011;286:15050–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ponten F, Jirstrom K, Uhlen M. The Human Protein Atlas–a tool for pathology. J Pathol. 2008;216:387–93.

    Article  CAS  PubMed  Google Scholar 

  46. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19:156–72.

    Article  CAS  PubMed  Google Scholar 

  47. Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M, et al. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-beta-dependent cancer metastasis. J Clin Invest. 2014;124:564–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–9.

    Article  CAS  PubMed  Google Scholar 

  49. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for participation and cooperation from the patients with NSCLC. Funding was provided by grants from National Natural Science Foundation of China (81872343, 81672277), and Suzhou Key Laboratory for Molecular Cancer Genetics (SZS201209), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: XT and H-TZ. Development of methodology: XT, SW, and ZL. Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): XT, SW, ZL, CL, CZ, ZS, XL, and JZ. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): XT, SW, ZL, CL, and CZ. Writing, review, and/or revision of the manuscript: XT and H-TZ. Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): XT, SW, ZL, CL, and CZ. Study supervision: H-TZ.

Corresponding author

Correspondence to Hong-Tao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Wang, S., Lei, Z. et al. MYOCD and SMAD3/SMAD4 form a positive feedback loop and drive TGF-β-induced epithelial–mesenchymal transition in non-small cell lung cancer. Oncogene 39, 2890–2904 (2020). https://doi.org/10.1038/s41388-020-1189-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1189-4

This article is cited by

Search

Quick links