Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stabilization of β-catenin upon B-cell receptor signaling promotes NF-kB target genes transcription in mantle cell lymphoma

Abstract

B-cell receptor (BCR) signaling pathways and interactions with the tumor microenvironment account for mantle cell lymphoma (MCL) cells survival in lymphoid organs. In several MCL cases, the WNT/β-catenin canonical pathway is activated and β–catenin accumulates into the nucleus. As both BCR and β-catenin are important mediators of cell survival and interaction with the microenvironment, we investigated the crosstalk between BCR and WNT/β-catenin signaling and analyzed their impact on cellular homeostasis as well as their targeting by specific inhibitors. β-catenin was detected in all leukemic MCL samples and its level of expression rapidly increased upon BCR stimulation. This stabilization was hampered by the BCR-pathway inhibitor Ibrutinib, supporting β-catenin as an effector of the BCR signaling. In parallel, MCL cells as compared with normal B cells expressed elevated levels of WNT16, a NF-κB target gene. Its expression increased further upon BCR stimulation to participate to the stabilization of β-catenin. Upon BCR stimulation, β-catenin translocated into the nucleus but did not induce a Wnt-like transcriptional response, i.e., TCF/LEF dependent. β-catenin rather participated to the regulation of NF-κB transcriptional targets, such as IL6, IL8, and IL1. Oligo pull down and chromatin immunoprecipitation experiments demonstrated that β-catenin is part of a protein complex that binds the NF-κB DNA consensus sequence, strengthening the idea of an association between the two proteins. An inhibitor targeting β-catenin transcriptional interactions hindered both NF-κB DNA recruitment and induced primary MCL cells apoptosis. Thus, β-catenin likely represents another player through which BCR signaling impacts on MCL cell survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BCR-mediated stabilization of β-catenin in primary MCL cells.
Fig. 2: BCR engagement induces β-catenin stabilization and nuclear translocation.
Fig. 3: MCL cells express WNT16 ligands that contribute to β-catenin stabilization.
Fig. 4: β-catenin is involved in non-TCF-dependent transcription.
Fig. 5: β-catenin participates to a complex at NF-κB consensus DNA sequence.

Similar content being viewed by others

References

  1. Argatoff LH, Connors JM, Klasa RJ, Horsman DE, Gascoyne RD. Mantle cell lymphoma: a clinicopathologic study of 80 cases. Blood. 1997;89:2067–78.

    Article  CAS  PubMed  Google Scholar 

  2. Orchard J, Garand R, Davis Z, Babbage G, Sahota S, Matutes E, et al. A subset of t(11;14) lymphoma with mantle cell features displays mutated IgVH genes and includes patients with good prognosis, nonnodal disease. Blood. 2003;101:4975–81.

    Article  CAS  PubMed  Google Scholar 

  3. Bosch F, Jares P, Campo E, Lopez-Guillermo A, Piris MA, Villamor N, et al. PRAD-1/cyclin D1 gene overexpression in chronic lymphoproliferative disorders: a highly specific marker of mantle cell lymphoma. Blood. 1994;84:2726–32.

    Article  CAS  PubMed  Google Scholar 

  4. Jares P, Colomer D, Campo E. Molecular pathogenesis of mantle cell lymphoma. J Clin Invest. 2012;122:3416–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perez-Galan P, Dreyling M, Wiestner A. Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood. 2011;117:26–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hadzidimitriou A, Agathangelidis A, Darzentas N, Murray F, Delfau-Larue MH, Pedersen LB, et al. Is there a role for antigen selection in mantle cell lymphoma? Immunogenetic support from a series of 807 cases. Blood. 2011;118:3088–95.

    Article  CAS  PubMed  Google Scholar 

  7. Saba NS, Liu D, Herman SE, Underbayev C, Tian X, Behrend D, et al. Pathogenic role of B-cell receptor signaling and canonical NF-kappaB activation in mantle cell lymphoma. Blood. 2016;128:82–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rizzatti EG, Falcao RP, Panepucci RA, Proto-Siqueira R, Anselmo-Lima WT, Okamoto OK, et al. Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta signalling pathways. Br J Haematol. 2005;130:516–26.

    Article  CAS  PubMed  Google Scholar 

  9. Kimura Y, Arakawa F, Kiyasu J, Miyoshi H, Yoshida M, Ichikawa A, et al. The Wnt signaling pathway and mitotic regulators in the initiation and evolution of mantle cell lymphoma: gene expression analysis. Int J Oncol. 2013;43:457–68.

    Article  CAS  PubMed  Google Scholar 

  10. Gelebart P, Anand M, Armanious H, Peters AC, Dien Bard J, Amin HM, et al. Constitutive activation of the Wnt canonical pathway in mantle cell lymphoma. Blood. 2008;112:5171–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–205.

    Article  CAS  PubMed  Google Scholar 

  12. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;11:3286–305.

    Article  CAS  PubMed  Google Scholar 

  13. Stamos JL, Weis WI. The beta-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5:a007898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–9.

    Article  CAS  PubMed  Google Scholar 

  15. Goode N, Hughes K, Woodgett JR, Parker PJ. Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. J Biol Chem. 1992;267:16878–82.

    CAS  PubMed  Google Scholar 

  16. Christian SL, Sims PV, Gold MR. The B cell antigen receptor regulates the transcriptional activator beta-catenin via protein kinase C-mediated inhibition of glycogen synthase kinase-3. J Immunol. 2002;169:758–69.

    Article  CAS  PubMed  Google Scholar 

  17. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:422–6.

    Article  CAS  PubMed  Google Scholar 

  18. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–12.

    Article  CAS  PubMed  Google Scholar 

  19. Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol. 2002;22:1172–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 2002;14:381–95.

    Article  CAS  PubMed  Google Scholar 

  21. Baran-Marszak F, Boukhiar M, Harel S, Laguillier C, Roger C, Gressin R, et al. Constitutive and B-cell receptor-induced activation of STAT3 are important signaling pathways targeted by bortezomib in leukemic mantle cell lymphoma. Haematologica. 2010;95:1865–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bernard S, Danglade D, Gardano L, Laguillier C, Lazarian G, Roger C, et al. Inhibitors of BCR signalling interrupt the survival signal mediated by the micro-environment in mantle cell lymphoma. Int J Cancer. 2014;136:2761–74.

    Article  CAS  PubMed  Google Scholar 

  23. Gold MR, Ingham RJ, McLeod SJ, Christian SL, Scheid MP, Duronio V, et al. Targets of B-cell antigen receptor signaling: the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 signaling pathway and the Rap1 GTPase. Immunol Rev. 2000;176:47–68.

    Article  CAS  PubMed  Google Scholar 

  24. Dal Col J, Dolcetti R. GSK-3beta inhibition: at the crossroad between Akt and mTOR constitutive activation to enhance cyclin D1 protein stability in mantle cell lymphoma. Cell Cycle. 2008;7:2813–6.

    Article  CAS  PubMed  Google Scholar 

  25. Gold MR, Scheid MP, Santos L, Dang-Lawson M, Roth RA, Matsuuchi L, et al. The B cell antigen receptor activates the Akt (protein kinase B)/glycogen synthase kinase-3 signaling pathway via phosphatidylinositol 3-kinase. J Immunol. 1999;163:1894–905.

    CAS  PubMed  Google Scholar 

  26. Boukhiar MA, Roger C, Tran J, Gressin R, Martin A, Ajchenbaum-Cymbalista F, et al. Targeting early B-cell receptor signaling induces apoptosis in leukemic mantle cell lymphoma. Exp Hematol Oncol. 2013;2:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bognar MK, Vincendeau M, Erdmann T, Seeholzer T, Grau M, Linnemann JR, et al. Oncogenic CARMA1 couples NF-kappaB and beta-catenin signaling in diffuse large B-cell lymphomas. Oncogene. 2016;35:4269–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen FE, Huang DB, Chen YQ, Ghosh G. Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature. 1998;391:410–3.

    Article  CAS  PubMed  Google Scholar 

  29. Raskatov JA, Meier JL, Puckett JW, Yang F, Ramakrishnan P, Dervan PB. Modulation of NF-kappaB-dependent gene transcription using programmable DNA minor groove binders. Proc Natl Acad Sci USA. 2012;109:1023–8.

    Article  PubMed  Google Scholar 

  30. Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F, et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell. 2004;5:91–102.

    Article  CAS  PubMed  Google Scholar 

  31. Khan NI, Bradstock KF, Bendall LJ. Activation of Wnt/beta-catenin pathway mediates growth and survival in B-cell progenitor acute lymphoblastic leukaemia. Br J Haematol. 2007;138:338–48.

    Article  CAS  PubMed  Google Scholar 

  32. Gandhirajan RK, Poll-Wolbeck SJ, Gehrke I, Kreuzer KA. Wnt/beta-catenin/LEF-1 signaling in chronic lymphocytic leukemia (CLL): a target for current and potential therapeutic options. Curr Cancer Drug Targets. 2010;10:716–27.

    Article  CAS  PubMed  Google Scholar 

  33. Spaargaren M, de Rooij MF, Kater AP, Eldering E. BTK inhibitors in chronic leukemia: a glimpse to the future. Oncogene. 2015;34:2426–36.

    Article  CAS  PubMed  Google Scholar 

  34. Lindvall J, Islam TC. Interaction of Btk and Akt in B cell signaling. Biochem Biophys Res Commun. 2002;293:1319–26.

    Article  CAS  PubMed  Google Scholar 

  35. de Rooij MF, Kuil A, Kater AP, Kersten MJ, Pals ST, Spaargaren M. Ibrutinib and idelalisib synergistically target BCR-controlled adhesion in MCL and CLL: a rationale for combination therapy. Blood. 2015;125:2306–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 2012;18:1359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun Y, Zhu D, Chen F, Qian M, Wei H, Chen W, et al. SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. Oncogene. 2016;35:4321–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lovatt M, Bijlmakers MJ. Stabilisation of beta-catenin downstream of T cell receptor signalling. PLoS ONE. 2010;5:e12794.

  39. Koopmans T, Eilers R, Menzen M, Halayko A, Gosens R. beta-catenin directs nuclear Factor-kappaB p65 output via CREB-binding protein/p300 in human airway smooth muscle. Front Immunol. 2017;8:1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma B, Hottiger MO. Crosstalk between Wnt/beta-Catenin and NF-kappaB signaling pathway during Inflammation. Front Immunol. 2016;7:378.

    PubMed  PubMed Central  Google Scholar 

  41. Valenta T, Hausmann G, Basler K. The many faces and functions of beta-catenin. EMBO J. 2012;31:2714–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang X, Hao J. Development of anticancer agents targeting the Wnt/beta-catenin signaling. Am J Cancer Res. 2015;5:2344–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mathur R, Sehgal L, Braun FK, Berkova Z, Romaguerra J, Wang M, et al. Targeting Wnt pathway in mantle cell lymphoma-initiating cells. J Hematol Oncol. 2015;8:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hallett RM, Kondratyev MK, Giacomelli AO, Nixon AM, Girgis-Gabardo A, Ilieva D, et al. Small molecule antagonists of the Wnt/beta-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PLoS ONE. 2012;7:e33976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mazieres J, You L, He B, Xu Z, Lee AY, Mikami I, et al. Inhibition of Wnt16 in human acute lymphoblastoid leukemia cells containing the t(1;19) translocation induces apoptosis. Oncogene. 2005;24:5396–400.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

CF was the recipient of a “Année Recherche” support from APHP. AQ was the recipient of a Jansen fellowship. This project was funded by a “Bonus Qualité Recherche” grant from University Paris 13 and benefited from the financial support of INSERM, University Paris 13 and the Labex INFLAMEX, contract ANR11 IDEX00502. We thank Dr C. Leroy for reading the manuscript, Dr L. Guittat for helpful discussion during the experimental work and Dr B. Papp for initiating collaboration with Dr P. Gelebart.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nadine Varin-Blank or Fanny Baran-Marszak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarian, G., Friedrich, C., Quinquenel, A. et al. Stabilization of β-catenin upon B-cell receptor signaling promotes NF-kB target genes transcription in mantle cell lymphoma. Oncogene 39, 2934–2947 (2020). https://doi.org/10.1038/s41388-020-1183-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1183-x

This article is cited by

Search

Quick links