Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Preclinical validation of Alpha-Enolase (ENO1) as a novel immunometabolic target in multiple myeloma

A Correction to this article was published on 07 September 2021

This article has been updated

Abstract

Bone marrow plasmacytoid dendritic cells (pDCs) in patients with multiple myeloma (MM) promote tumor growth, survival, drug resistance, and immune suppression. Understanding the molecular signaling crosstalk among the tumor cells, pDCs and immune cells will identify novel therapeutic approaches to enhance anti-MM immunity. Using oligonucleotide arrays, we found that pDC-MM interactions induce metabolic enzyme Alpha-Enolase (ENO1) in both pDCs and MM cells. Analysis of MM patient gene expression profiling database showed that ENO1 expression inversely correlates with overall survival. Protein expression analysis showed that ENO1 is expressed in pDC and MM cells; and importantly, that pDC-MM coculture further increases ENO1 expression in both MM cells and pDCs. Using our coculture models of patient autologous pDC-T-NK-MM cells, we examined whether targeting ENO1 can enhance anti-MM immunity. Biochemical inhibition of ENO1 with ENO1 inhibitor (ENO1i) activates pDCs, as well as increases pDC-induced MM-specific CD8+ CTL and NK cell activity against autologous tumor cells. Combination of ENO1i and anti-PD-L1 Ab or HDAC6i ACY-241 enhances autologous MM-specific CD8+ CTL activity. Our preclinical data therefore provide the basis for novel immune-based therapeutic approaches targeting ENO1, alone or in combination with anti-PD-L1 Ab or ACY241, to restore anti-MM immunity, enhance MM cytotoxicity, and improve patient outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene expression profiling of MM cells in the presence or absence of pDCs.
Fig. 2: Modulation of ENO1 expression during pDC-MM cell interactions.
Fig. 3: ENO1 blockade activates pDCs and enhances pDC-triggered T cell proliferation.
Fig. 4: ENO1 inhibition triggers pDC-induced MM-specific CD8+ CTLs.
Fig. 5: ENO1 inhibition triggers pDC-induced NK cell-mediated lysis of MM cells.
Fig. 6: Combination of ENO1 inhibitor and Anti-PD-L1 Ab or ACY-241 enhances T cell-mediated MM-specific cytotoxic activity.
Fig. 7: Schematic representation depicting the role of ENO1 in MM.

Similar content being viewed by others

Change history

References

  1. Anderson KC. The 39th David A. Karnofsky Lecture: bench-to-bedside translation of targeted therapies in multiple myeloma. J Clin Oncol. 2012;30:445–52.

    Article  CAS  Google Scholar 

  2. Anderson KC. Therapeutic advances in relapsed or refractory multiple myeloma. J Natl Compr Canc Netw. 2013;11:676–9.

    Article  CAS  Google Scholar 

  3. Anderson KC. Promise of immune therapies in multiple myeloma. J Oncol Pr. 2018;14:411–3.

    Article  Google Scholar 

  4. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8:519–30.

    Article  CAS  Google Scholar 

  5. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

    Article  CAS  Google Scholar 

  6. Liberti MV, Locasale JW. Metabolism: a new layer of glycolysis. Nat Chem Biol. 2016;12:577–8. https://doi.org/10.1038/nchembio.2133.

    Article  CAS  PubMed  Google Scholar 

  7. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029–33. https://doi.org/10.1126/science.1160809.

    Article  Google Scholar 

  8. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014;513:559–63. https://doi.org/10.1038/nature13490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Milosevic M, Fyles A, Hedley D, Hill R. The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure. Semin Radiat Oncol. 2004;14:249–58.

    Article  Google Scholar 

  10. Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008;30:393–402. https://doi.org/10.1016/j.molcel.2008.04.009.

    Article  CAS  PubMed  Google Scholar 

  11. Maiso P, Huynh D, Moschetta M, Sacco A, Aljawai Y, Mishima Y, et al. Metabolic signature identifies novel targets for drug resistance in multiple myeloma. Cancer Res 2015;75:2071–82. https://doi.org/10.1158/0008-5472.CAN-14-3400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ikeda S, Kitadate A, Abe F, Takahashi N, Tagawa H. Hypoxia-inducible KDM3A addiction in multiple myeloma. Blood Adv 2018;2:323–34. https://doi.org/10.1182/bloodadvances.2017008847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ader I, Brizuela L, Bouquerel P, Malavaud B, Cuvillier O. Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Res 2008;68:8635–42. https://doi.org/10.1158/0008-5472.CAN-08-0917.

    Article  CAS  PubMed  Google Scholar 

  14. Shin YC, Joo CH, Gack MU, Lee HR, Jung JU. Kaposi’s sarcoma-associated herpesvirus viral IFN regulatory factor 3 stabilizes hypoxia-inducible factor-1 alpha to induce vascular endothelial growth factor expression. Cancer Res 2008;68:1751–9. https://doi.org/10.1158/0008-5472.CAN-07-2766.

    Article  CAS  PubMed  Google Scholar 

  15. Chauhan D, Singh AV, Brahmandam M, Carrasco R, Bandi M, Hideshima T, et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 2009;16:309–23.

    Article  CAS  Google Scholar 

  16. Ray A, Tian Z, Das DS, Coffman RL, Richardson P, Chauhan D, et al. A novel TLR-9 agonist C792 inhibits plasmacytoid dendritic cell-induced myeloma cell growth and enhance cytotoxicity of bortezomib. Leukemia. 2014;28:1716–24.

    Article  CAS  Google Scholar 

  17. Ray A, Das DS, Song Y, Richardson P, Munshi NC, Chauhan D, et al. Targeting PD1-PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells. Leukemia 2015;29:1441–4.

    Article  CAS  Google Scholar 

  18. Ray A, Das DS, Song Y, Hideshima T, Tai YT, Chauhan D, et al. Combination of a novel HDAC6 inhibitor ACY-241 and anti-PD-L1 antibody enhances anti-tumor immunity and cytotoxicity in multiple myeloma. Leukemia 2018;32:843–6.

    Article  CAS  Google Scholar 

  19. Ray A, Song Y, Du T, Tai YT, Chauhan D, Anderson KC. Targeting tryptophan catabolic kynurenine pathway enhances antitumor immunity and cytotoxicity in multiple myeloma. Leukemia. 2019. https://doi.org/10.1038/s41375-019-0558-x.

  20. Bi E, Li R, Bover LC, Li H, Su P, Ma X, et al. E-cadherin expression on multiple myeloma cells activates tumor-promoting properties in plasmacytoid DCs. J Clin Invest 2018;128:4821–31. https://doi.org/10.1172/JCI121421.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cappello P, Principe M, Bulfamante S, Novelli F. Alpha-Enolase (ENO1), a potential target in novel immunotherapies. Front Biosci (Landmark Ed). 2017;22:944–59.

    Article  CAS  Google Scholar 

  22. Granchi C, Fancelli D, Minutolo F. An update on therapeutic opportunities offered by cancer glycolytic metabolism. Bioorg Med Chem Lett 2014;24:4915–5. https://doi.org/10.1016/j.bmcl.2014.09.041.

    Article  CAS  PubMed  Google Scholar 

  23. Ryans K, Omosun Y, McKeithen DN, Simoneaux T, Mills CC, Bowen N, et al. The immunoregulatory role of alpha enolase in dendritic cell function during Chlamydia infection. BMC Immunol 2017;18:27 https://doi.org/10.1186/s12865-017-0212-1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pacella I, Piconese S. Immunometabolic checkpoints of treg dynamics: adaptation to microenvironmental opportunities and challenges. Front Immunol 2019;10:1889 https://doi.org/10.3389/fimmu.2019.01889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu X, Miao X, Wu Y, Li C, Guo Y, Liu Y, et al. ENO1 promotes tumor proliferation and cell adhesion mediated drug resistance (CAM-DR) in Non-Hodgkin’s Lymphomas. Exp Cell Res 2015;335:216–23. https://doi.org/10.1016/j.yexcr.2015.05.020.

    Article  CAS  PubMed  Google Scholar 

  26. Barlogie B, Tricot G, Anaissie E, Shaughnessy J, Rasmussen E, van Rhee F, et al. Thalidomide and hematopoietic-cell transplantation for multiple myeloma. N. Engl J Med. 2006;354:1021–30.

    Article  CAS  Google Scholar 

  27. Muller FL, Colla S, Aquilanti E, Manzo VE, Genovese G, Lee J, et al. Passenger deletions generate therapeutic vulnerabilities in cancer. Nature 2012;488:337–42. https://doi.org/10.1038/nature11331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stessman HA, Baughn LB, Sarver A, Xia T, Deshpande R, Mansoor A, et al. Profiling bortezomib resistance identifies secondary therapies in a mouse myeloma model. Mol Cancer Ther 2013;12:1140–50. https://doi.org/10.1158/1535-7163.MCT-12-1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shaughnessy JD Jr, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007;109:2276–84.

    Article  CAS  Google Scholar 

  30. Vande Broek I, Leleu X, Schots R, Facon T, Vanderkerken K, Van Camp B, et al. Clinical significance of chemokine receptor (CCR1, CCR2 and CXCR4) expression in human myeloma cells: the association with disease activity and survival. Haematologica 2006;91:200–6.

    CAS  PubMed  Google Scholar 

  31. Heuck CJ, Qu P, van Rhee F, Waheed S, Usmani SZ, Epstein J, et al. Five gene probes carry most of the discriminatory power of the 70-gene risk model in multiple myeloma. Leukemia 2014;28:2410–3. https://doi.org/10.1038/leu.2014.232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cappello P, Tonoli E, Roberta Curto R, Giordano D, Giovarelli M, Novelli F. Anti-a-enolase antibody limits the invasion of myeloid-derived suppressor cells and attenuates their restraining effector T cell response. Oncoimmunology. 2016;5:e1112940 https://doi.org/10.1080/2162402X.2015.1112940.

    Article  PubMed  Google Scholar 

  33. Manasanch EE, Han G, Mathur R, Qing Y, Zhang Z, Lee H, et al. A pilot study of pembrolizumab in smoldering myeloma: report of the clinical, immune, and genomic analysis. Blood Adv 2019;3:2400–8. https://doi.org/10.1182/bloodadvances.2019000300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qorraj M, Bruns H, Böttcher M, Weigand L, Saul D, Mackensen A, et al. The PD-1/PD-L1 axis contributes to immune metabolic dysfunctions of monocytes in chronic lymphocytic leukemia. Leukemia 2017;31:470–8. https://doi.org/10.1038/leu.2016.214.

    Article  CAS  PubMed  Google Scholar 

  35. Li W, Sun Z. Mechanism of Action for HDAC Inhibitors-Insights from Omics Approaches. Int J Mol Sci. 2019;20:E1616 https://doi.org/10.3390/ijms20071616.

    Article  CAS  PubMed  Google Scholar 

  36. Lu C, Zhang K, Zhang Y, Tan M, Li Y, He X, et al. Preparation and characterization of vorinostat-coated beads for profiling of novel target proteins. J Chromatogr A 2014;1372C:34–41. https://doi.org/10.1016/j.chroma.2014.10.098.

    Article  CAS  PubMed  Google Scholar 

  37. Bae J, Hideshima T, Tai YT, Song Y, Richardson P, Raje N, et al. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia 2018;32:1932–47. https://doi.org/10.1038/s41375-018-0062-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gu Z, Xia J, Xu H, Frech I, Tricot G, Zhan F. NEK2 promotes aerobic glycolysis in multiple myeloma through regulating splicing of pyruvate kinase. J Hematol Oncol. 2017;10:17 https://doi.org/10.1186/s13045-017-0392-4.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhao M, Fang W, Wang Y, Guo S, Shu L, Wang L, et al. Enolase-1 is a therapeutic target in endometrial carcinoma. Oncotarget 2015;6:15610–27.

    Article  Google Scholar 

  40. Jung DW, Kim WH, Park SH, Lee J, Kim J, Su D, et al. A unique small molecule inhibitor of enolase clarifies its role in fundamental biological processes. ACS Chem Biol 2013;8:1271–82.

    Article  CAS  Google Scholar 

  41. Chauhan D, Li G, Auclair D, Hideshima T, Richardson P, Podar K, et al. Identification of genes regulated by 2-methoxyestradiol (2ME2) in multiple myeloma cells using oligonucleotide arrays. Blood 2003;101:3606–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The grant supports for this investigation were provided by “Dr. Miriam and Sheldon Adelson Medical Research Foundation”, and by the National Institutes of Health Specialized Programs of Research Excellence (SPORE) grant P50100707, R01CA207237, and RO1 CA050947. KCA is an American Cancer Society Clinical Research Professor.

Author information

Authors and Affiliations

Authors

Contributions

D.C. conceptualized the project, designed research, analyzed data, and wrote the paper; A.R. designed research, performed the experiments, and analyzed the data; Y.S. and T.D. helped in flow cytometry; and K.C.A. provided clinical samples, and reviewed the manuscript.

Corresponding authors

Correspondence to Dharminder Chauhan or Kenneth C. Anderson.

Ethics declarations

Conflict of interest

K.C.A. is on Advisory board of Celgene, Millenium-Takeda, Gilead, Janssen, and Bristol Myers Squibb, and is a Scientific Founder with financial interest in Acetylon, Oncopep and C4 Therapeutics. D.C. is consultant to Stemline Therapeutic, Inc., Oncopeptides AB; and Equity owner in C4 Therapeutics. The remaining authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, A., Song, Y., Du, T. et al. Preclinical validation of Alpha-Enolase (ENO1) as a novel immunometabolic target in multiple myeloma. Oncogene 39, 2786–2796 (2020). https://doi.org/10.1038/s41388-020-1172-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1172-0

This article is cited by

Search

Quick links