Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Overexpression of PSAT1 promotes metastasis of lung adenocarcinoma by suppressing the IRF1-IFNγ axis

Abstract

An increasing number of enzymes involved in serine biosynthesis have been identified and correlated with malignant evolution in various types of cancer. Here we showed that the overexpression of phosphoserine aminotransferase 1 (PSAT1) is widely found in lung cancer tissues compared with nontumor tissues and predicts a poorer prognosis in patients with lung adenocarcinoma. PSAT1 expression was examined in a tissue microarray by immunohistochemistry. The data show that the knockdown of PSAT1 dramatically inhibits the in vitro and in vivo metastatic potential of highly metastatic lung cancer cells; conversely, the enforced expression of exogenous PSAT1 predominantly enhances the metastatic potential of lung cancer cells. Importantly, manipulating PSAT1 expression regulates the in vivo tumor metastatic abilities in lung cancer cells. Adjusting the glucose and glutamine concentrations did not alter the PSAT1-driven cell invasion properties, indicating that this process might not rely on the activation of its enzymatic function. RNA microarray analysis of transcriptional profiling from PSAT1 alternation in CL1-5 and CL1-0 cells demonstrated that interferon regulatory factor 1 (IRF1) acts as a crucial regulator of PSAT1-induced gene expression upon metastatic progression. Decreasing the IRF1-IFIH1 axis compromised the PSAT1-prompted transcriptional reprogramming in cancer cells. Our results identify PSAT1 as a key regulator by a novel PSAT1/IRF1 axis in lung cancer progression, which may serve as a potential biomarker and therapeutic target for the treatment of lung cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In silico analysis showed that PSAT1 is overexpressed in lung adenocarcinoma patients.
Fig. 2: PSAT1 expression in normal and tumor tissues derived from clinical lung cancer patients.
Fig. 3: Endogenous PSAT1 expression and in vitro cell invasion assay.
Fig. 4: The in vivo lung metastatic colonization assay.
Fig. 5: Characterization of invasion and the serine biosynthetic pathway in lung cancer cell lines.
Fig. 6: PSAT1 suppressed IRF1 activation and downstream targets.
Fig. 7: IRF1- IFNγ pathway triggered upon PSAT1-regulating lung cancer cell metastasis.

Similar content being viewed by others

References

  1. Baek JY, Jun DY, Taub D, Kim YH. Characterization of human phosphoserine aminotransferase involved in the phosphorylated pathway of L-serine biosynthesis. Biochemical J. 2003;373:191–200.

    Article  CAS  Google Scholar 

  2. Basurko MJ, Marche M, Darriet M, Cassaigne A. Phosphoserine aminotransferase, the second step-catalyzing enzyme for serine biosynthesis. IUBMB Life. 1999;48:525–9.

    Article  CAS  PubMed  Google Scholar 

  3. Yin K. Positive correlation between expression level of mitochondrial serine hydroxymethyltransferase and breast cancer grade. Onco Targets Ther. 2015;8:1069–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kwon JE, Kim DH, Jung WH, Koo JS. Expression of serine and glycine-related enzymes in phyllodes tumor. Neoplasma. 2014;61:566–78.

    Article  CAS  PubMed  Google Scholar 

  5. Hart CE, Race V, Achouri Y, Wiame E, Sharrard M, Olpin SE, et al. Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am J Hum Genet. 2007;80:931–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tabatabaie L, Klomp LW, Berger R, de Koning TJ. L-serine synthesis in the central nervous system: a review on serine deficiency disorders. Mol Genet Metab. 2010;99:256–62.

    Article  CAS  PubMed  Google Scholar 

  7. Acuna-Hidalgo R, Schanze D, Kariminejad A, Nordgren A, Kariminejad MH, Conner P, et al. Neu-Laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am J Hum Genet. 2014;95:285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shaheen R, Rahbeeni Z, Alhashem A, Faqeih E, Zhao Q, Xiong Y, et al. Neu-Laxova syndrome, an inborn error of serine metabolism, is caused by mutations in PHGDH. Am J Hum Genet. 2014;94:898–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma L, Tao Y, Duran A, Llado V, Galvez A, Barger JF, et al. Control of nutrient stress-induced metabolic reprogramming by PKCzeta in tumorigenesis. Cell. 2013;152:599–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vie N, Copois V, Bascoul-Mollevi C, Denis V, Bec N, Robert B, et al. Overexpression of phosphoserine aminotransferase PSAT1 stimulates cell growth and increases chemoresistance of colon cancer cells. Mol Cancer. 2008;7:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanley MP, Rosenberg DW. One-carbon metabolism and colorectal cancer: potential mechanisms of chemoprevention. Curr Pharmacol Rep. 2015;1:197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martens JW, Nimmrich I, Koenig T, Look MP, Harbeck N, Model F, et al. Association of DNA methylation of phosphoserine aminotransferase with response to endocrine therapy in patients with recurrent breast cancer. Cancer Res. 2005;65:4101–17.

    Article  CAS  PubMed  Google Scholar 

  13. Bu D, Lewis CM, Sarode V, Chen M, Ma X, Lazorwitz AM, et al. Identification of breast cancer DNA methylation markers optimized for fine-needle aspiration samples. Cancer Epidemiol Biomark Prev. 2013;22:2212–21.

    Article  CAS  Google Scholar 

  14. Noh S, Kim do H, Jung WH, Koo JS. Expression levels of serine/glycine metabolism-related proteins in triple negative breast cancer tissues. Tumour Biol. 2014;35:4457–68.

    Article  CAS  PubMed  Google Scholar 

  15. Pollari S, Kakonen SM, Edgren H, Wolf M, Kohonen P, Sara H, et al. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat. 2011;125:421–30.

    Article  CAS  PubMed  Google Scholar 

  16. Yang Y, Wu J, Cai J, He Z, Yuan J, Zhu X, et al. PSAT1 regulates cyclin D1 degradation and sustains proliferation of non-small cell lung cancer cells. Int J Cancer. 2015;136:E39–50.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012;148:259–72.

    Article  CAS  PubMed  Google Scholar 

  18. Quezada SA, Peggs KS. An antitumor boost to TH9 cells. Nat Immunol. 2014;15:703–5.

    Article  CAS  PubMed  Google Scholar 

  19. Chen FF, Jiang G, Xu K, Zheng JN. Function and mechanism by which interferon regulatory factor-1 inhibits oncogenesis. Oncol Lett. 2013;5:417–23.

    Article  CAS  PubMed  Google Scholar 

  20. Ksienzyk A, Neumann B, Kroger A. IRF-1 is critical for IFNgamma mediated immune surveillance. Oncoimmunology. 2012;1:533–4.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bouker KB, Skaar TC, Riggins RB, Harburger DS, Fernandez DR, Zwart A, et al. Interferon regulatory factor-1 (IRF-1) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis. Carcinogenesis. 2005;26:1527–35.

    Article  CAS  PubMed  Google Scholar 

  22. Ksienzyk A, Neumann B, Nandakumar R, Finsterbusch K, Grashoff M, Zawatzky R, et al. IRF-1 expression is essential for natural killer cells to suppress metastasis. Cancer Res. 2011;71:6410–8.

    Article  CAS  PubMed  Google Scholar 

  23. Mizuno H, Kitada K, Nakai K, Sarai A. PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genom. 2009;2:18.

    Article  CAS  Google Scholar 

  24. Szasz AM, Lanczky A, Nagy A, Forster S, Hark K, Green JE, et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget. 2016;7:49322–33.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Knox WE, Herzfeld A, Hudson J. Phosphoserine phosphatase distribution in normal and neoplastic rat tissues. Arch Biochem Biophys. 1969;132:397–403.

    Article  CAS  PubMed  Google Scholar 

  26. Lund K, Merrill DK, Guynn RW. The reactions of the phosphorylated pathway of L-serine biosynthesis: thermodynamic relationships in rabbit liver in vivo. Arch Biochem Biophys. 1985;237:186–96.

    Article  CAS  PubMed  Google Scholar 

  27. Pamment J, Ramsay E, Kelleher M, Dornan D, Ball KL. Regulation of the IRF-1 tumour modifier during the response to genotoxic stress involves an ATM-dependent signalling pathway. Oncogene. 2002;21:7776–85.

    Article  CAS  PubMed  Google Scholar 

  28. Harrison C, Vannucchi AM. Ruxolitinib: a potent and selective Janus kinase 1 and 2 inhibitor in patients with myelofibrosis. An update for clinicians. Therapeutic Adv Hematol. 2012;3:341–54.

    Article  CAS  Google Scholar 

  29. Hu Y, Hong Y, Xu Y, Liu P, Guo DH, Chen Y. Inhibition of the JAK/STAT pathway with ruxolitinib overcomes cisplatin resistance in non-small-cell lung cancer NSCLC. Apoptosis. 2014;19:1627–36.

    Article  CAS  PubMed  Google Scholar 

  30. de Koning TJ, Snell K, Duran M, Berger R, Poll-The BT, Surtees R. L-serine in disease and development. Biochemical J. 2003;371:653–61.

    Article  Google Scholar 

  31. Jaeken J, Detheux M, Van Maldergem L, Frijns JP, Alliet P, Foulon M, et al. 3-Phosphoglycerate dehydrogenase deficiency and 3-phosphoserine phosphatase deficiency: inborn errors of serine biosynthesis. J Inherit Metab Dis. 1996;19:223–6.

    Article  CAS  PubMed  Google Scholar 

  32. Mehrmohamadi M, Liu X, Shestov AA, Locasale JW. Characterization of the usage of the serine metabolic network in human cancer. Cell Rep. 2014;9:1507–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ye J, Mancuso A, Tong X, Ward PS, Fan J, Rabinowitz JD, et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc Natl Acad Sci USA. 2012;109:6904–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 2013;493:542–6.

    Article  CAS  PubMed  Google Scholar 

  35. Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 2011;334:1278–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C, et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun. 2014;5:3128.

    Article  CAS  PubMed  Google Scholar 

  37. Gromova I, Gromov P, Honma N, Kumar S, Rimm D, Talman ML et al. High level PHGDH expression in breast is predominantly associated with keratin 5-positive cell lineage independently of malignancy. Mol Oncol. 2015;9:1636–54.

  38. Liu J, Guo S, Li Q, Yang L, Xia Z, Zhang L, et al. Phosphoglycerate dehydrogenase induces glioma cells proliferation and invasion by stabilizing forkhead box M1. J Neurooncol. 2013;111:245–55.

    Article  CAS  PubMed  Google Scholar 

  39. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet. 2011;43:869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tisserand J, Khetchoumian K, Thibault C, Dembele D, Chambon P, Losson R. Tripartite motif 24 (Trim24/Tif1alpha) tumor suppressor protein is a novel negative regulator of interferon (IFN)/signal transducers and activators of transcription (STAT) signaling pathway acting through retinoic acid receptor alpha (Raralpha) inhibition. J Biol Chem. 2011;286:33369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang N, Rayes RF, Elahi SM, Lu Y, Hancock MA, Massie B, et al. The IGF-trap: novel inhibitor of carcinoma growth and metastasis. Mol Cancer Ther. 2015;14:982–93.

    Article  CAS  PubMed  Google Scholar 

  42. Yuan L, Zhou C, Lu Y, Hong M, Zhang Z, Zhang Z, et al. IFN-gamma-mediated IRF1/miR-29b feedback loop suppresses colorectal cancer cell growth and metastasis by repressing IGF1. Cancer Lett. 2015;359:136–47.

    Article  CAS  PubMed  Google Scholar 

  43. Bachmann SB, Frommel SC, Camicia R, Winkler HC, Santoro R, Hassa PO. DTX3L and ARTD9 inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells. Mol Cancer. 2014;13:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma B, Herzog EL, Moore M, Lee CM, Na SH, Lee CG, et al. RIG-like helicase regulation of chitinase 3-like 1 axis and pulmonary metastasis. Sci Rep. 2016;6:26299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ranoa DR, Parekh AD, Pitroda SP, Huang X, Darga T, Wong AC, et al. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget. 2016;7:26496–515.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yu X, Wang H, Li X, Guo C, Yuan F, Fisher PB, et al. Activation of the MDA-5-IPS-1 viral sensing pathway induces cancer cell death and type I IFN-dependent antitumor immunity. Cancer Res. 2016;76:2166–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R, et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol. 1997;17:353–60.

    Article  CAS  PubMed  Google Scholar 

  48. Lee YC, Saijo N, Sasaki Y, Takahashi H, Sakurai M, Ishihara J, et al. Clonogenic patterns of human pulmonary adenocarcinoma cell lines (PC-9, PC-13 and PC-14) and how they influence the results of test for chemosensitivity to cisplatin in the human tumor clonogenic assay. Jpn J Clin Oncol. 1985;15:637–44.

    CAS  PubMed  Google Scholar 

  49. Cheng TY, Yang YC, Wang HP, Tien YW, Shun CT, Huang HY, et al. Pyruvate kinase M2 promotes pancreatic ductal adenocarcinoma invasion and metastasis through phosphorylation and stabilization of PAK2 protein. Oncogene. 2018;37:1730–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by grants from Academia Sinica and Ministry of Science and Technology grants (MOST 104-0210-01-09-02, MOST 105-0210-01-13-01, MOST 106-0210-01-15-02, and MOST 108-2628-B-002-014). We like to thank Miss Tracy Tsai for her assists in immunohistochemistry works. And also like to thank the GRC Instrument Core Facilities for their support for the Affymetrix microarray, IVIS spectrum, and Aperio digital pathology analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chih-Jen Yang or Kuo-Tai Hua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, YC., Chang, YC., Chuang, HH. et al. Overexpression of PSAT1 promotes metastasis of lung adenocarcinoma by suppressing the IRF1-IFNγ axis. Oncogene 39, 2509–2522 (2020). https://doi.org/10.1038/s41388-020-1160-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1160-4

This article is cited by

Search

Quick links