Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pharmacological and genetic perturbation establish SIRT5 as a promising target in breast cancer

Abstract

SIRT5 is a member of the sirtuin family of NAD+-dependent protein lysine deacylases implicated in a variety of physiological processes. SIRT5 removes negatively charged malonyl, succinyl, and glutaryl groups from lysine residues and thereby regulates multiple enzymes involved in cellular metabolism and other biological processes. SIRT5 is overexpressed in human breast cancers and other malignancies, but little is known about the therapeutic potential of SIRT5 inhibition for treating cancer. Here we report that genetic SIRT5 disruption in breast cancer cell lines and mouse models caused increased succinylation of IDH2 and other metabolic enzymes, increased oxidative stress, and impaired transformation and tumorigenesis. We, therefore, developed potent, selective, and cell-permeable small-molecule SIRT5 inhibitors. SIRT5 inhibition suppressed the transformed properties of cultured breast cancer cells and significantly reduced mammary tumor growth in vivo, in both genetically engineered and xenotransplant mouse models. Considering that Sirt5 knockout mice are generally normal, with only mild phenotypes observed, these data establish SIRT5 as a promising target for treating breast cancer. The new SIRT5 inhibitors provide useful probes for future investigations of SIRT5 and an avenue for targeting SIRT5 as a therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SIRT5 is overexpressed in human breast cancer.
Fig. 2: Sirt5 knock-down inhibits the anchorage-independent growth of human cancer cells.
Fig. 3: Sirt5 deletion impairs tumor growth and reduces metastasis burden in vivo.
Fig. 4: Sirt5 deletion significantly increases succinylation levels of proteins and increases ROS levels.
Fig. 5: Development of thiourea SIRT5 inhibitors JH-I5-2 and DK1-04.
Fig. 6: DK1-04e inhibits the cellular growth of breast cancer cells by targeting SIRT5.
Fig. 7: SIRT5-selective inhibitor prodrug DK1-04e impairs mammary tumor growth in MMTV-PyMT transgenic mice and human breast cancer mouse model.

Similar content being viewed by others

References

  1. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Prim. 2019;5:66.

    PubMed  Google Scholar 

  2. Unterlass JE, Curtin NJ. Warburg and Krebs and related effects in cancer. Expert Rev Mol Med. 2019;21:e4.

    PubMed  Google Scholar 

  3. Hirschey MD, Zhao Y. Metabolic regulation by lysine malonylation, succinylation, and glutarylation. Mol Cell Proteom: MCP. 2015;14:2308–15.

    CAS  Google Scholar 

  4. Lin H, Su X, He B. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem Biol. 2012;7:947–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bheda P, Jing H, Wolberger C, Lin H. The substrate specificity of sirtuins. Annu Rev Biochem. 2016;85:405–29.

    CAS  PubMed  Google Scholar 

  6. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225–38. https://doi.org/10.1038/nrm3293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Imai S-i, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403:795–800.

    CAS  PubMed  Google Scholar 

  8. Du J, Zhou Y, Su X, Yu J, Khan S, Jiang H, et al. Sirt5 is an NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334:806–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nishida Y, Rardin MJ, Carrico C, He W, Sahu AK, Gut P, et al. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol Cell. 2015;59:321–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013;50:919–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteom: MCP. 2011;10:M111.012658.

    Google Scholar 

  12. Tan M, Peng C, Anderson KA, Chhoy P, Xie Z, Dai L, et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014;19:605–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Finley LWS, Carracedo A, Lee J, Souza A, Egia A, Zhang J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1[alpha] destabilization. Cancer Cell. 2011;19:416–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11:253–70.

    PubMed  PubMed Central  Google Scholar 

  15. Sebastián C, Zwaans BMM, Silberman DM, Gymrek M, Goren A, Zhong L, et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell. 2012;151:1185–99.

    PubMed  PubMed Central  Google Scholar 

  16. Chang L, Xi L, Liu Y, Liu R, Wu Z, Jian Z. SIRT5 promotes cell proliferation and invasion in hepatocellular carcinoma by targeting E2F1. Mol Med Rep. 2018;17:342–9.

    CAS  PubMed  Google Scholar 

  17. Igci M, Kalender ME, Borazan E, Bozgeyik I, Bayraktar R, Bozgeyik E, et al. High-throughput screening of Sirtuin family of genes in breast cancer. Gene. 2016;586:123–8.

    CAS  PubMed  Google Scholar 

  18. Lu W, Zuo Y, Feng Y, Zhang M. SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumour Biol: J Int Soc Oncodev Biol Med. 2014;35:10699–705.

    CAS  Google Scholar 

  19. Xu L, Che X, Wu Y, Song N, Shi S, Wang S, et al. SIRT5 as a biomarker for response to anthracycline-taxane-based neoadjuvant chemotherapy in triple-negative breast cancer. Oncol Rep. 2018;39:2315–23.

    CAS  PubMed  Google Scholar 

  20. Wang YQ, Wang HL, Xu J, Tan J, Fu LN, Wang JL, et al. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat Commun. 2018;9:545.

    PubMed  PubMed Central  Google Scholar 

  21. Xiangyun Y, Xiaomin N, Linping G, Yunhua X, Ziming L, Yongfeng Y, et al. Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget. 2017;8:6984–93.

    PubMed  Google Scholar 

  22. Yang X, Wang Z, Li X, Liu B, Liu M, Liu L, et al. SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation. Cancer Res. 2018;78:372–86.

    PubMed  Google Scholar 

  23. Lin ZF, Xu HB, Wang JY, Lin Q, Ruan Z, Liu FB, et al. SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem Biophys Res Commun. 2013;441:191–5.

    CAS  PubMed  Google Scholar 

  24. Zhou L, Wang F, Sun R, Chen X, Zhang M, Xu Q, et al. SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep. 2016;17:811–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. He B, Du J, Lin H. Thiosuccinyl peptides as Sirt5-specific inhibitors. J Am Chem Soc. 2012;134:1922–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang Y, Zheng W. Cyclic tripeptide-based potent and selective human SIRT5 inhibitors. Med Chem. 2020;16:358–67.

    CAS  PubMed  Google Scholar 

  27. Kalbas D, Liebscher S, Nowak T, Meleshin M, Pannek M, Popp C, et al. Potent and selective inhibitors of human Sirtuin 5. J Med Chem. 2018;61:2460–71.

    CAS  PubMed  Google Scholar 

  28. Liu J, Huang Y, Zheng WA. Selective cyclic peptidic human SIRT5 inhibitor. Molecules. 2016;21:1217.

    PubMed Central  Google Scholar 

  29. Maurer B, Rumpf T, Scharfe M, Stolfa DA, Schmitt ML, He W, et al. Inhibitors of the NAD+-dependent protein desuccinylase and demalonylase Sirt5. ACS Med Chem Lett. 2012;3:1050–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rajabi N, Auth M, Troelsen KR, Pannek M, Bhatt DP, Fontenas M, et al. Mechanism-based inhibitors of the human Sirtuin 5 deacylase: structure-activity relationship, biostructural, and kinetic. Insight Angew Chem. 2017;56:14836–41.

    CAS  Google Scholar 

  31. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    PubMed  PubMed Central  Google Scholar 

  32. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163:506–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15:3243–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol. 1992;12:954–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007;8:R76.

    PubMed  PubMed Central  Google Scholar 

  36. Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol. 2003;163:2113–26.

    PubMed  PubMed Central  Google Scholar 

  37. Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ, et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene. 2000;19:968–88.

    CAS  PubMed  Google Scholar 

  38. Sadhukhan S, Liu X, Ryu D, Nelson OD, Stupinski JA, Li Z, et al. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc Natl Acad Sci USA. 2016;113:4320–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Greene KS, Lukey MJ, Wang X, Blank B, Druso JE, Lin MJ, et al. SIRT5 stabilizes mitochondrial glutaminase and supports breast cancer tumorigenesis. Proc Natl Acad Sci USA. 2019;116:26625–32.

    CAS  PubMed Central  Google Scholar 

  40. Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY, et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. 2009;461:109–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang L, Shestov AA, Swain P, Yang C, Parker SJ, Wang QA, et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature. 2016;532:255–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med. 2012;52:1–6.

    CAS  PubMed  Google Scholar 

  43. Farooqi AS, Hong JY, Cao J, Lu X, Price IR, Zhao Q, et al. Novel lysine-based thioureas as mechanism-based inhibitors of Sirtuin 2 (SIRT2) with anticancer activity in a colorectal cancer murine model. J medicinal Chem. 2019;62:4131–41.

    CAS  Google Scholar 

  44. Spiegelman NA, Hong JY, Hu J, Jing H, Wang M, Price IR, et al. A small-molecule SIRT2 inhibitor that promotes K-Ras4a lysine fatty-acylation. ChemMedChem. 2019;14:744–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jing H, Hu J, He B, Negrón Abril YL, Stupinski J, Weiser K, et al. A SIRT2-selective inhibitor promotes c-Myc oncoprotein degradation and exhibits broad anticancer activity. Cancer Cell. 2016;29:297–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith BC, Denu JM. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide. Biochemistry. 2007;46:14478–86.

    CAS  PubMed  Google Scholar 

  47. Wagner GR, Bhatt DP, O’Connell TM, Thompson JW, Dubois LG, Backos DS, et al. A class of reactive Acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab. 2017;25:823–37. e828.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wagner GR, Hirschey MD. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol Cell. 2014;54:5–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 2013;18:920–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Phan LM, Yeung SC, Lee MH. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med. 2014;11:1–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu J, Sadhukhan S, Noriega LG, Moullan N, He B, Weiss RS. et al. Metabolic characterization of a Sirt5 deficient mouse model. Sci Rep. 2013;3:2806 https://doi.org/10.1038/srep02806.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Spiegelman NA, Price IR, Jing H, Wang M, Yang M, Cao J, et al. Direct comparison of SIRT2 inhibitors: potency, specificity, activity-dependent inhibition, and on-target anticancer activities. ChemMedChem. 2018;13:1890–4.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the NCI Physical Sciences-Oncology Network Bioresource Core Facility (PBCF) for MDA-MB-231 cells, and Drs. Ruchika Bhawal and Sheng Zhang from the Cornell Proteomics and Metabolomics Facility for technical assistance. This work was supported in part by NIH R01 grants CA163255 and CA223534. YLNA was supported by NIH/NIGMS grant 5T32GM008500, and IRF was supported by NIH/NIGMS grant T32GM007273, a Cornell Deans Excellence Fellowship, and an HHMI Gilliam Fellowship. JA was supported by grants from the Ecole Polytechnique Federale de Lausanne (EPFL), and the Swiss National Science Foundation (SNSF 31003A_179435). This work utilized the Cornell University NMR facility, which is supported in part by the NSF through MRI award CHE-1531632.

Author information

Authors and Affiliations

Authors

Contributions

YLNA, IRF, JYH, RC, HL, and RSW conceptualization; YLNA, IRF, and JYH, formal analysis; YLNA, IRF, JYH, YLC, DAK, QZ, MY, JH, SS, BL, BH, BR, JJB, RD, JM, FW, VM, and TS investigation; YLNA, IRF, JYH, YLC, DAK, QZ, MY, JH, SS, BL, BH, and JJB methodology; YLNA, IRF, and JYH writing-original draft; YLNA, IRF, JYH, HL, and RSW writing-review and editing; JA, RC, HL, and RSW resources; RC, HL, and RSW funding acquisition; HL and RSW supervision; HL and RSW project administration.

Corresponding authors

Correspondence to Hening Lin or Robert S. Weiss.

Ethics declarations

Conflict of interest

Cornell University has patents on the SIRT5 inhibitors described in the manuscript. The authors have no additional competing interests to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abril, Y.L.N., Fernandez, I.R., Hong, J.Y. et al. Pharmacological and genetic perturbation establish SIRT5 as a promising target in breast cancer. Oncogene 40, 1644–1658 (2021). https://doi.org/10.1038/s41388-020-01637-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01637-w

This article is cited by

Search

Quick links