Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MiR-19a/miR-96-mediated low expression of KIF26A suppresses metastasis by regulating FAK pathway in gastric cancer

Abstract

Gastric cancer (GC) is one of the most common malignant neoplasms. Invasion and metastasis are the main causes of GC-related deaths. Recently, kinesins were discovered to be involved in tumor development. The aim of this study was to elucidate the roles of kinesin superfamily protein 26A (KIF26A) in GC and its underlying molecular mechanism in regulating tumor invasion and metastasis. Using real-time quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC), we showed that KIF26A expression was lower in GC tissues without lymph node metastasis (LNM) than in nontumorous gastric mucosa, and even lower in GC tissues with LNM than in GC tissues without LNM. Functional experiments showed that KIF26A inhibited migration and invasion of GC cells. We further identified focal-adhesion kinase (FAK), phosphatidylinositol 3-kinase regulatory subunit alpha (PI3KR1), VAV3, Rac1 and p21-activated kinase 2, and β-PAK (PAK3) as downstream effectors of KIF26A in the focal-adhesion pathway, and we found that KIF26A could regulate FAK mRNA expression through inhibiting c-MYC by MAPK pathway. c-MYC could bind to the promoter of FAK and activate FAK transcription. Moreover, we found that KIF26A-mediated inactivation of the focal-adhesion pathway could reduce the occurrence of the epithelial-to-mesenchymal transition (EMT) by increasing expression of E-cadherin and reducing that of Snail. Luciferase assays and Western blotting revealed that miR-19a and miR-96 negatively regulate KIF26A. Finally, we found that decreased expression of KIF26A has been positively correlated with histological differentiation, Lauren classification, LNM, distal metastasis, and clinical stage, as well as poor survival in patients with GC. These data indicate that KIF26A could inhibit GC migration and invasion by regulating the focal-adhesion pathway and repressing the occurrence of EMT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: KIF26A is underexpressed in human GC.
Fig. 2: KIF26A inhibited cell migration and invasion of GC cell lines.
Fig. 3: KIF26A demonstrated no effect on cell proliferation or apoptosis in GC cells.
Fig. 4: KIF26A suppresses migration and invasion via inactivation of the FAK–PI3KR1–VAV3–Rac1–PAK3 axis in the focal-adhesion pathway.
Fig. 5: KIF26A influences the expression of E-cadherin and Snail.
Fig. 6: miR-19a and miR-96 negatively regulate the expression of KIF26A.

Similar content being viewed by others

References

  1. Li PF, Chen SC, Xia T, Jiang XM, Shao YF, Xiao BX, et al. Non-coding RNAs and gastric cancer. World J Gastroenterol. 2014;20:5411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang L. Incidence and mortality of gastric cancer in China. World J Gastroenterol. 2006;12:17–20.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hippo Y, Taniguchi H, Tsutsumi S, Machida N, Chong JM, Fukayama M, et al. Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res. 2002;62:233–40.

    CAS  PubMed  Google Scholar 

  4. Zhang H, Ma RR, Wang XJ, Su ZX, Chen X, Shi DB, et al. KIF26B, a novel oncogene, promotes proliferation and metastasis by activating the VEGF pathway in gastric cancer. Oncogene. 2017;36:5609–19.

    Article  CAS  PubMed  Google Scholar 

  5. Miki H, Setou M, Kaneshiro K, Hirokawa N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA. 2001;98:7004–11.

    Article  CAS  PubMed  Google Scholar 

  6. Bachmann A, Straube A. Kinesins in cell migration. Biochem Soc Trans. 2015;43:79–83.

    Article  CAS  PubMed  Google Scholar 

  7. Castillo A, Morse HC 3rd, Godfrey VL, Naeem R, Justice MJ. Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Res. 2007;67:10138–147.

    Article  CAS  PubMed  Google Scholar 

  8. Ho J, Du Y, Wong OG, Siu MK, Chan KK, Cheung AN. Downregulation of the gli transcription factors regulator Kif7 facilitates cell survival and migration of choriocarcinoma cells. PLoS ONE. 2014;9:e108248.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Niwa S. Kinesin superfamily proteins and the regulation of microtubule dynamics in morphogenesis. Anat Sci Int. 2015;90:1–6.

    Article  CAS  PubMed  Google Scholar 

  10. Rath O, Kozielski F. Kinesins and cancer. Nat Rev Cancer. 2012;12:527–39.

    Article  CAS  PubMed  Google Scholar 

  11. Yu Y, Feng YM. The role of kinesin family proteins in tumorigenesis and progression: potential biomarkers and molecular targets for cancer therapy. Cancer. 2010;116:5150–60.

    Article  CAS  PubMed  Google Scholar 

  12. Zou JX, Duan Z, Wang J, Sokolov A, Xu J, Chen CZ, et al. Kinesin family deregulation coordinated by bromodomain protein ANCCA and histone methyltransferase MLL for breast cancer cell growth, survival, and tamoxifen resistance. Mol Cancer Res. 2014;12:539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corson TW, Gallie BL. KIF14 mRNA expression is a predictor of grade and outcome in breast cancer. Int J Cancer. 2006;119:1088–94.

    Article  CAS  PubMed  Google Scholar 

  14. Hung PF, Hong TM, Hsu YC, Chen HY, Chang YL, Wu CT, et al. The motor protein KIF14 inhibits tumor growth and cancer metastasis in lung adenocarcinoma. PLoS ONE. 2013;8:e61664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Q, Wang L, Li D, Deng J, Zhao Z, He S, et al. Kinesin family member 14 is a candidate prognostic marker for outcome of glioma patients. Cancer Epidemiol. 2013;37:79–84.

    Article  CAS  PubMed  Google Scholar 

  16. Yang T, Zhang XB, Zheng ZM. Suppression of KIF14 expression inhibits hepatocellular carcinoma progression and predicts favorable outcome. Cancer Sci. 2013;104:552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu H, Xu W, Zhang H, Liu J, Xu H, Lu S, et al. Targeted deletion of Kif18a protects from colitis-associated colorectal (CAC) tumors in mice through impairing Akt phosphorylation. Biochem Biophys Res Commun. 2013;438:97–102.

    Article  CAS  PubMed  Google Scholar 

  18. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, et al. A standardized kinesin nomenclature. J Cell Biol. 2004;167:19–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miki H, Okada Y, Hirokawa N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol. 2005;15:467–76.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou R, Niwa S, Homma N, Takei Y, Hirokawa N. KIF26A is an unconventional kinesin and regulates GDNF-Ret signaling in enteric neuronal development. Cell. 2009;139:802–13.

    Article  CAS  PubMed  Google Scholar 

  21. Ezratty EJ, Partridge MA, Gundersen GG. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat Cell Biol. 2005;7:581–90.

    Article  CAS  PubMed  Google Scholar 

  22. Korb T, Schluter K, Enns A, Spiegel HU, Senninger N, Nicolson GL, et al. Integrity of actin fibers and microtubules influences metastatic tumor cell adhesion. Exp Cell Res. 2004;299:236–47.

    Article  CAS  PubMed  Google Scholar 

  23. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  24. Wang TH, Yeh CT, Ho JY, Ng KF, Chen TC. OncomiR miR-96 and miR-182 promote cell proliferation and invasion through targeting ephrinA5 in hepatocellular carcinoma. Mol Carcinog. 2016;55:366–75.

    Article  CAS  PubMed  Google Scholar 

  25. Wu Q, Yang Z, An Y, Hu H, Yin J, Zhang P, et al. MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumour suppressor MXD1. Cell Death Dis. 2014;5:e1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chandrasekaran G, Tatrai P, Gergely F. Hitting the brakes: targeting microtubule motors in cancer. Br J Cancer. 2015;113:693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu X, Gong H, Huang K. Oncogenic role of kinesin proteins and targeting kinesin therapy. Cancer Sci. 2013;104:651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stangel D, Erkan M, Buchholz M, Gress T, Michalski C, Raulefs S, et al. Kif20a inhibition reduces migration and invasion of pancreatic cancer cells. J Surg Res. 2015;197:91–100.

    Article  CAS  PubMed  Google Scholar 

  29. Qin S, Ai F, Ji WF, Rao W, Zhang HC, Yao WJ. miR-19a promotes cell growth and tumorigenesis through targeting SOCS1 in gastric cancer. Asian Pac J Cancer Prev. 2013;14:835–40.

    Article  PubMed  Google Scholar 

  30. Zhang J, Kong X, Li J, Luo Q, Li X, Shen L, et al. miR-96 promotes tumor proliferation and invasion by targeting RECK in breast cancer. Oncol Rep. 2014;31:1357–63.

    Article  CAS  PubMed  Google Scholar 

  31. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563–72.

    Article  CAS  PubMed  Google Scholar 

  32. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127:679–95.

    Article  CAS  PubMed  Google Scholar 

  33. Petit V, Thiery JP. Focal adhesions: structure and dynamics. Biol Cell. 2000;92:477–94.

    Article  CAS  PubMed  Google Scholar 

  34. Turner CE. Paxillin and focal adhesion signalling. Nat Cell Biol. 2000;2:E231–6.

    Article  CAS  PubMed  Google Scholar 

  35. Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol. 2006;18:516–23.

    Article  CAS  PubMed  Google Scholar 

  36. Muroyama A, Lechler T. Microtubule organization, dynamics and functions in differentiated cells. Development. 2017;144:3012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Akhshi TK, Wernike D, Piekny A. Microtubules and actin crosstalk in cell migration and division. Cytoskeleton. 2014;71:1–23.

    Article  CAS  PubMed  Google Scholar 

  38. Volkov VA, Ataullakhanov FI. [Investigation of molecular machine that integrates microtubules depolymerization and chromosomes movement in mitosis]. Ross Fiziol Zh Im I M Sechenova. 2013;99:153–65.

    CAS  PubMed  Google Scholar 

  39. Wang L, Tanaka Y, Wang D, Morikawa M, Zhou R, Homma N, et al. The atypical kinesin KIF26A facilitates termination of nociceptive responses by sequestering focal adhesion kinase. Cell Rep. 2018;24:2894–907.

    Article  CAS  PubMed  Google Scholar 

  40. Magnelli L, Schiavone N, Staderini F, Biagioni A, Papucci L. MAP kinases pathways in gastric cancer. Int J Mol Sci. 2020 21:2893.

  41. Avizienyte E, Frame MC. Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol. 2005;17:542–7.

    Article  CAS  PubMed  Google Scholar 

  42. Baquero P, Jiménez-Mora E, Santos A, Lasa M, Chiloeches A. TGFbeta induces epithelial-mesenchymal transition of thyroid cancer cells by both the BRAF/MEK/ERK and Src/FAK pathways. Mol Carcinog. 2016;55:1639–54.

    Article  CAS  PubMed  Google Scholar 

  43. Serrels A, Canel M, Brunton VG, Frame MC. Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement: insights from in vivo imaging. Cell Adh Migr. 2011;5:360–5.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pharoah PD, Guilford P, Caldas C. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology. 2001;121:1348–53.

    Article  CAS  PubMed  Google Scholar 

  45. Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin Chim Acta; Int J Clin Chem. 2013;424:53–65.

    Article  CAS  Google Scholar 

  46. Lin Y, Dong C, Zhou BP. Epigenetic regulation of EMT: the Snail story. Curr Pharm Des. 2014;20:1698–1705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao P, Xing AY, Zhou GY, Zhang TG, Zhang JP, Gao C, et al. The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer. Oncogene. 2013;32:491–501.

    Article  CAS  PubMed  Google Scholar 

  48. Chen X, Wang YW, Xing AY, Xiang S, Shi DB, Liu L, et al. Suppression of SPIN1-mediated PI3K-Akt pathway by miR-489 increases chemosensitivity in breast cancer. J Pathol. 2016;239:459–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 81872362 and 82072665) and the Taishan Scholars Program of Shandong Province (Grant No. ts201511096).

Author information

Authors and Affiliations

Authors

Contributions

PG performed the conception and design of this manuscript. R-RM and HZ, H-FC, G-HZ, Y-RT collected clinical samples. R-RM conducted experiments and analyzed data. PG and R-RM performed the manuscript writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Peng Gao.

Ethics declarations

Conflict of interest

All authors promise that neither the manuscript in its entirety nor portions therein has been published previously nor is under consideration for publication elsewhere. The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, RR., Zhang, H., Chen, HF. et al. MiR-19a/miR-96-mediated low expression of KIF26A suppresses metastasis by regulating FAK pathway in gastric cancer. Oncogene 40, 2524–2538 (2021). https://doi.org/10.1038/s41388-020-01610-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01610-7

This article is cited by

Search

Quick links