Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance

Abstract

Integrins are cell adhesion receptors, which are typically transmembrane glycoproteins that connect to the extracellular matrix (ECM). The function of integrins regulated by biochemical events within the cells. Understanding the mechanisms of cell growth by integrins is important in elucidating their effects on tumor progression. One of the major events in integrin signaling is integrin binding to extracellular ligands. Another event is distant signaling that gathers chemical signals from outside of the cell and transmit the signals upon cell adhesion to the inside of the cell. In normal breast tissue, integrins function as checkpoints to monitor effects on cell proliferation, while in cancer tissue these functions altered. The combination of tumor microenvironment and its associated components determines the cell fate. Hypoxia can increase the expression of several integrins. The exosomal integrins promote the growth of metastatic cells. Expression of certain integrins is associated with increased metastasis and decreased prognosis in cancers. In addition, integrin-binding proteins promote invasion and metastasis in breast cancer. Targeting specific integrins and integrin-binding proteins may provide new therapeutic approaches for breast cancer therapies. This review will examine the current knowledge of integrins’ role in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrin heterodimers consists of an alpha (α) and a beta (β) subunit associated by noncovalent interactions forming an extracellular ligand-binding part, two multi-domain, two single-pass transmembrane helices and two short cytoplasmic tails.
Fig. 2: Integrin inside–out and outside–in signaling.
Fig. 3: Integrin and integrin-associated proteins promote therapy-resistance in breast cancer.
Fig. 4: Integrin signaling promotes metastasis in breast cancer.

Similar content being viewed by others

References

  1. Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2019;19:179. PMID: 30002479; PMCID: PMC6629548.

  2. Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol. 2010;11:288.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Humphries JD, Byron A, Humphries MJ. Integrin ligands at a glance. J Cell Sci. 2006;119:3901–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Moreno-Layseca P, Icha J, Hamidi H, et al. Integrin trafficking in cells and tissues. Nat Cell Biol. 2019;21:122–32. https://doi.org/10.1038/s41556-018-0223-z.

  5. Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25:234–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Raab-Westphal S, Marshall J, Goodman S. Integrins as therapeutic targets: successes and cancers. Cancers. 2017;9:110.

    PubMed Central  Google Scholar 

  7. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–80.

    CAS  PubMed  Google Scholar 

  8. Dickinson CD, Veerapandian B, Dai XP, Hamlin RC, Xuong NH, Ruoslahti E, et al. Crystal structure of the tenth type III cell adhesion module of human fibronectin. J Mol Biol. 1994;236:1079–92.

    CAS  PubMed  Google Scholar 

  9. Aluwihare P, Mu Z, Zhao Z, Yu D, Weinreb PH, Horan GS, et al. Mice that lack activity of alphavbeta6- and alphavbeta8-integrins reproduce the abnormalities of Tgfb1- and Tgfb3-null mice. J Cell Sci. 2009;122:227–32.

    CAS  PubMed  Google Scholar 

  10. Mould AP, Humphries MJ. Regulation of integrin function through conformational complexity: not simply a knee-jerk reaction? Curr Opin Cell Biol. 2004;16:544–51.

    CAS  PubMed  Google Scholar 

  11. Hughes PE, Diaz-Gonzalez F, Leong L, Wu C, McDonald JA, Shattil SJ, et al. Breaking the integrin hinge A defined structural constraint regulates integrin signaling. J Biol Chem. 1996;271:6571–4.

    CAS  PubMed  Google Scholar 

  12. Sun Z, Costell M, Fässler R. Integrin activation by talin, kindlin and mechanical forces. Nat Cell Biol. 2019;21:25.

    CAS  PubMed  Google Scholar 

  13. Bahrami A, Khazaei M, Shahidsales S, Hassanian SM, Hasanzadeh M, Maftouh M, et al. The therapeutic potential of PI3K/Akt/mTOR inhibitors in breast cancer: rational and progress. J Cell Biochem. 2018;119:213–22.

    CAS  PubMed  Google Scholar 

  14. Costa RL, Han HS, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Res Treat. 2018;169:397–406.

    CAS  PubMed  Google Scholar 

  15. Glénisson M, Vacher S, Callens C, Susini A, Cizeron-Clairac G, Le Scodan R, et al. Identification of new candidate therapeutic target genes in triple-negative breast cancer. Genes Cancer. 2012;3:63–70.

    PubMed  PubMed Central  Google Scholar 

  16. Yom CK, Noh D-Y, Kim WH, Kim HS. Clinical significance of high focal adhesion kinase gene copy number and overexpression in invasive breast cancer. Breast Cancer Res Treat. 2011;128:647–55.

    CAS  PubMed  Google Scholar 

  17. Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ. Src kinase activation by direct interaction with the integrin β cytoplasmic domain. Proc Natl Acad Sci. 2003;100:13298–302.

    CAS  PubMed  Google Scholar 

  18. Alanko J, Mai A, Jacquemet G, Schauer K, Kaukonen R, Saari M, et al. Integrin endosomal signalling suppresses anoikis. Nat Cell Biol. 2015;17:1412.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Barrow-McGee R, Kishi N, Joffre C, Ménard L, Hervieu A, Bakhouche BA, et al. Beta 1-integrin–c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes. Nat Commun. 2016;7:11942.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol. 2002;4:E83.

    CAS  PubMed  Google Scholar 

  21. Tai Y-L, Chu P-Y, Lai I-R, Wang M-Y, Tseng H-Y, Guan J-L, et al. An EGFR/Src-dependent β4 integrin/FAK complex contributes to malignancy of breast cancer. Sci Rep. 2015;5:16408.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen M, Jiang Y-Z, Wei Y, Ell B, Sheng X, Esposito M, et al. Tinagl1 suppresses triple-negative breast cancer progression and metastasis by simultaneously inhibiting integrin/FAK and EGFR signaling. Cancer Cell. 2019;35:64–80. e7.

    CAS  PubMed  Google Scholar 

  23. Nisticò P, Di Modugno F, Spada S, Bissell MJ. β1 and β4 integrins: from breast development to clinical practice. Breast Cancer Res. 2014;16:459.

    PubMed  PubMed Central  Google Scholar 

  24. Hou S, Isaji T, Hang Q, Im S, Fukuda T, Gu J. Distinct effects of β1 integrin on cell proliferation and cellular signaling in MDA-MB-231 breast cancer cells. Sci Rep. 2016;6:18430.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. dos Santos PB, Zanetti JS, Ribeiro-Silva A, Beltrão EI. Beta 1 integrin predicts survival in breast cancer: a clinicopathological and immunohistochemical study. Diagnostic Pathol. 2012;7:104.

    Google Scholar 

  26. Stewart RL, O’connor KL. Clinical significance of the integrin α6β4 in human malignancies. Lab Investig. 2015;95:976.

    CAS  PubMed  Google Scholar 

  27. Lipscomb EA, Mercurio AM. Mobilization and activation of a signaling competent α6β4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Rev. 2005;24:413–23.

    CAS  PubMed  Google Scholar 

  28. Ranjan A, Gupta P, Srivastava SK. Penfluridol: an antipsychotic agent suppresses metastatic tumor growth in triple-negative breast cancer by inhibiting integrin signaling axis. Cancer Res. 2016;76:877–90.

    CAS  PubMed  Google Scholar 

  29. Ivaska J, Heino J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu Rev Cell Dev Biol. 2011;27:291–320.

    CAS  PubMed  Google Scholar 

  30. De Franceschi N, Hamidi H, Alanko J, Sahgal P, Ivaska J. Integrin traffic–the update. J Cell Sci. 2015;128:839–52.

    PubMed  PubMed Central  Google Scholar 

  31. Wang P, Ballestrem C, Streuli CH. The C terminus of talin links integrins to cell cycle progression. J Cell Biol. 2011;195:499–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Katz E, Streuli CH. The extracellular matrix as an adhesion checkpoint for mammary epithelial function. Int J Biochem Cell Biol. 2007;39:715–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sin S, Bonin F, Petit V, Meseure D, Lallemand F, Bieche I, et al. Role of the focal adhesion protein kindlin-1 in breast cancer growth and lung metastasis. J Natl Cancer Inst. 2011;103:1323–37.

    CAS  PubMed  Google Scholar 

  34. Glukhova MA, Streuli CH. How integrins control breast biology. Curr Opin Cell Biol. 2013;25:633–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bianchi-Smiraglia A, Paesante S, Bakin AV. Integrin beta5 contributes to the tumorigenic potential of breast cancer cells through the Src-FAK and MEK-ERK signaling pathways. Oncogene. 2013;32:3049–58.

    CAS  PubMed  Google Scholar 

  36. Lu S, Simin K, Khan A, Mercurio AM. Analysis of integrin beta4 expression in human breast cancer: association with basal-like tumors and prognostic significance. Clin Cancer Res. 2008;14:1050–8.

    CAS  PubMed  Google Scholar 

  37. Oh S, Kim H, Nam K, Shin I. Glut1 promotes cell proliferation, migration and invasion by regulating epidermal growth factor receptor and integrin signaling in triple-negative breast cancer cells. BMB Rep. 2017;50:132–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hsu E-C, Kulp SK, Huang H-L, Tu H-J, Chao M-W, Tseng Y-C, et al. Integrin-linked kinase as a novel molecular switch of the IL-6-NF-κB signaling loop in breast cancer. Carcinogenesis. 2016;37:430–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shock DD, Naik UP, Brittain JE, Alahari SK, Sondek J, Parise LV. Calcium-dependent properties of CIB binding to the integrin alphaIIb cytoplasmic domain and translocation to the platelet cytoskeleton. Biochem J. 1999;342:729–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rathinam R, Alahari SK. Important role of integrins in the cancer biology. J Cancer Metastasis Rev. 2010;29:223–37.

    CAS  Google Scholar 

  41. Freeman TC Jr, Black JL, Bray HG, Dagliyan O, Wu YI, Tripathy A, et al. Identification of novel integrin binding partners for CIB1: structural and thermodynamic basis of CIB1 promiscuity. J Biochem. 2013;52:7082.

    CAS  Google Scholar 

  42. Naik MU, Naik UP. Calcium-and integrin-binding protein 1 regulates microtubule organization and centrosome segregation through polo like kinase 3 during cell cycle progression. J Int J Biochem Cell Biol. 2011;43:120–9.

    CAS  Google Scholar 

  43. Naik MU, Pham NT, Beebe K, Dai W, Naik UP. Calcium‐dependent inhibition of polo‐like kinase 3 activity by CIB1 in breast cancer cells. J Int J Cancer. 2011;128:587–96.

    CAS  Google Scholar 

  44. Wang X, Peng X, Zhang X, Xu H, Lu C, Liu L, et al. The emerging roles of CIB1 in cancer. J Cellular Physiology. J Cell Physiol Biochem. 2017;43:1413–24.

    CAS  Google Scholar 

  45. Zhu W, Gliddon BL, Jarman KE, Moretti PA, Tin T, Parise LV, et al. CIB1 contributes to oncogenic signalling by Ras via modulating the subcellular localisation of sphingosine kinase 1. J Oncogene. 2017;36:2619.

    CAS  Google Scholar 

  46. Zhu W, Jarman KE, Lokman NA, Neubauer HA, Davies LT, Gliddon BL, et al. CIB2 negatively regulates oncogenic signaling in ovarian cancer via sphingosine kinase 1. J Cancer Res. 2017;77:4823–34.

    CAS  Google Scholar 

  47. Gamble JR, Sun WY, Li X, Hahn CN, Pitson SM, Vadas MA, et al. Sphingosine kinase-1 associates with integrin αVβ3 to mediate endothelial cell survival. J Am J Pathol. 2009;175:2217–25.

    CAS  Google Scholar 

  48. Chung AH, Leisner TM, Dardis GJ, Bivins MM, Keller AL, Parise LV. CIB1 depletion with docetaxel or TRAIL enhances triple-negative breast cancer cell death. J Cancer Cell Int. 2019;19:26.

    Google Scholar 

  49. Alahari SK, Lee JW, Juliano RL. Nischarin, a novel protein that interacts with the integrin α5 subunit and inhibits cell migration. J Cell Biol. 2000;151:1141–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Alahari SK, Reddig PJ, Juliano RL. The integrin‐binding protein Nischarin regulates cell migration by inhibiting PAK. EMBO J. 2004;23:2777–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jain P, Baranwal S, Dong S, Struckhoff AP, Worthylake RA, Alahari SK. Integrin-binding protein nischarin interacts with tumor suppressor liver kinase B1 (LKB1) to regulate cell migration of breast epithelial cells. J Biol Chem. 2013;288:15495–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ding Y, Milosavljevic T, Alahari SK. Nischarin inhibits LIM kinase to regulate cofilin phosphorylation and cell invasion. Mol Cell Biol. 2008;28:3742–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin L, Wessely O, Marcusson EG, Ivan C, Calin GA, Alahari SK. Prooncogenic factors miR-23b and miR-27b are regulated by Her2/Neu, EGF, and TNF-α in breast cancer. Cancer Res. 2013;73:2884–96.

    CAS  PubMed  Google Scholar 

  54. Jain P, Baranwal S, Dong S, Struckhoff AP, Worthylake RA, Alahari SK. Integrin-binding protein nischarin interacts with tumor suppressor liver kinase B1 (LKB1) to regulate cell migration of breast epithelial cells. J Biol Chem. 2013;288:15495–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Baranwal S, Wang Y, Rathinam R, Lee J, Jin L, McGoey R, et al. Molecular characterization of the tumor-suppressive function of nischarin in breast cancer. J Natl Cancer Inst. 2011;103:1513–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen J, Feng WL, Mo WJ, Ding XW, Xie SN. Expression of integrin-binding protein Nischarin in metastatic breast cancer. Mol Med Rep. 2015;12:77–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Maziveyi M, Dong S, Baranwal S, Alahari SK. Nischarin regulates focal adhesion and Invadopodia formation in breast cancer cells. Mol Cancer. 2018;17:21.

    PubMed  PubMed Central  Google Scholar 

  58. Eastlack SC, Dong S, Mo YY, Alahari SK. Expression of long noncoding RNA MALAT1 correlates with increased levels of Nischarin and inhibits oncogenic cell functions in breast cancer. PloS ONE. 2018;13:e0198945.

    PubMed  PubMed Central  Google Scholar 

  59. Maziveyi M, Dong S, Baranwal S, Mehrnezhad A, Rathinam R, Huckaba TM, et al. Exosomes from Nischarin-expressing cells reduce breast cancer cell motility and tumor growth. Cancer Res. 2019;79:2152–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dong S, Ruiz-Calderon B, Rathinam R, Eastlack S, Maziveyi M, Alahari SK. Knockout model reveals the role of Nischarin in mammary gland development, breast tumorigenesis and response to metformin treatment. Int J Cancer. 2020;146:2576–87.

    CAS  PubMed  Google Scholar 

  61. Allan AL, George R, Vantyghem SA, Lee MW, Hodgson NC, Engel CJ, et al. Role of the integrin-binding protein osteopontin in lymphatic metastasis of breast cancer. Am J Pathol. 2006;169:233–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Maric G, Annis M, Dong Z, Rose A, Ng S, Perkins D, et al. GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin α 5 β 1 for efficient breast cancer metastasis. Oncogene. 2015;34:5494.

    CAS  PubMed  Google Scholar 

  63. Dome B, Raso E, Dobos J, Meszaros L, Varga N, Puskas LG, et al. Parallel expression of alphaIIbbeta3 and alphavbeta3 integrins in human melanoma cells upregulates bFGF expression and promotes their angiogenic phenotype. Int J Cancer. 2005;116:27–35.

    PubMed  Google Scholar 

  64. Ohtoshi A, Maeda T, Higashi H, Ashizawa S, Yamada M, Hatakeyama M. beta3-endonexin as a novel inhibitor of cyclin A-associated kinase. Biochem Biophys Res Commun. 2000;267:947–52.

    CAS  PubMed  Google Scholar 

  65. Cao Z, Suo X, Chu Y, Xu Z, Bao Y, Miao C, et al. Peptides derived from the integrin beta cytoplasmic tails inhibit angiogenesis. Cell Commun Signal. 2018;16:38.

    PubMed  PubMed Central  Google Scholar 

  66. Geiger C, Nagel W, Boehm T, van Kooyk Y, Figdor CG, Kremmer E, et al. Cytohesin-1 regulates beta-2 integrin-mediated adhesion through both ARF-GEF function and interaction with LFA-1. EMBO J. 2000;19:2525–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bill A, Schmitz A, Konig K, Heukamp LC, Hannam JS, Famulok M. Anti-proliferative effect of cytohesin inhibition in gefitinib-resistant lung cancer cells. PLoS ONE. 2012;7:e41179.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Weizhong Z, Shuohui G, Hanjiao Q, Yuhong M, Xiaohua Y, Jian C, et al. Inhibition of cytohesin-1 by siRNA leads to reduced IGFR signaling in prostate cancer. Braz J Med Biol Res. 2011;44:642–6.

    PubMed  Google Scholar 

  69. Ratcliffe CDH, Siddiqui N, Coelho PP, Laterreur N, Cookey TN, Sonenberg N, et al. HGF-induced migration depends on the PI(3,4,5)P3-binding microexon-spliced variant of the Arf6 exchange factor cytohesin-1. J Cell Biol. 2019;218:285–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cooper J, Giancotti FG. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019;35:347–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang Y, Zhang Q, Cao Z, Huang Y, Cheng S, Pang D. HOXD3 plays a critical role in breast cancer stemness and drug resistance. Cell Physiol Biochem. 2018;46:1737–47.

    CAS  PubMed  Google Scholar 

  72. Goel HL, Pursell B, Chang C, Shaw LM, Mao J, Simin K, et al. GLI1 regulates a novel neuropilin‐2/α6β1 integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Mol Med. 2013;5:488–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Adorno-Cruz V, Hoffmann AD, Liu X, Wray B, Keri RA, Liu H. ITGA2 is a target of miR-206 promoting cancer stemness and lung metastasis through enhanced ACLY and CCND1 expression in triple negative breast cancer. bioRxiv. 2019. https://doi.org/10.1101/583062.

  74. Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 2013;25:254–64.

    CAS  PubMed  Google Scholar 

  75. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461.

    CAS  PubMed  Google Scholar 

  76. Lin S-Y, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, et al. β-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci. 2000;97:4262–6.

    CAS  PubMed  Google Scholar 

  77. Wang Z, Li Y, Xiao Y, Lin HP, Yang P, Humphries B, et al. Integrin α9 depletion promotes β-catenin degradation to suppress triple-negative breast cancer tumor growth and metastasis. Int J Cancer. 2019;145:2767–80. https://doi.org/10.1002/ijc.32359.

  78. Barnawi R, Al-Khaldi S, Colak D, Tulbah A, Al-Tweigeri T, Fallatah M, et al. β1 Integrin is essential for fascin-mediated breast cancer stem cell function and disease progression. Int J Cancer. 2019;145:830–41. https://doi.org/10.1002/ijc.32183.

  79. Li Y, Xiao Y, Lin H-P, Reichel D, Bae Y, Lee EY, et al. In vivo β-catenin attenuation by the integrin α5-targeting nano-delivery strategy suppresses triple negative breast cancer stemness and metastasis. Biomaterials. 2019;188:160–72.

    CAS  PubMed  Google Scholar 

  80. Hsu E-C, Kulp SK, Huang H-L, Tu H-J, Salunke SB, Sullivan NJ, et al. Function of integrin-linked kinase in modulating the stemness of IL-6–abundant breast cancer cells by regulating γ-secretase–mediated notch1 activation in caveolae. Neoplasia. 2015;17:497–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Desgrosellier JS, Lesperance J, Seguin L, Gozo M, Kato S, Franovic A, et al. Integrin αvβ3 drives slug activation and stemness in the pregnant and neoplastic mammary gland. Dev Cell. 2014;30:295–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lo P-K, Kanojia D, Liu X, Singh UP, Berger FG, Wang Q, et al. CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin–TGFβ signaling. Oncogene. 2012;31:2614.

    CAS  PubMed  Google Scholar 

  83. Martin TA, Jiang WG. Evaluation of the expression of stem cell markers in human breast cancer reveals a correlation with clinical progression and metastatic disease in ductal carcinoma. Oncol Rep. 2014;31:262–72.

    CAS  PubMed  Google Scholar 

  84. Bierie B, Pierce SE, Kroeger C, Stover DG, Pattabiraman DR, Thiru P, et al. Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc Natl Acad Sci. 2017;114:E2337–E46.

    CAS  PubMed  Google Scholar 

  85. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009;9:631.

    CAS  PubMed  Google Scholar 

  86. Aoudjit F, Vuori K. Integrin signaling in cancer cell survival and chemoresistance. Chemother Res Prac. 2012;2012:283181. https://doi.org/10.1155/2012/283181.

  87. Blandin A-F, Renner G, Lehmann M, Lelong-Rebel I, Martin S, Dontenwill M. β1 integrins as therapeutic targets to disrupt hallmarks of cancer. Front Pharmacol. 2015;6:279.

    PubMed  PubMed Central  Google Scholar 

  88. Campbell PS, Mavingire N, Khan S, Rowland LK, Wooten JV, Opoku‐Agyeman A, et al. AhR ligand aminoflavone suppresses α6‐integrin–Src–Akt signaling to attenuate tamoxifen resistance in breast cancer cells. J Cell Physiol. 2019;234:108–21.

    CAS  Google Scholar 

  89. Hanker AB, Estrada MV, Bianchini G, Moore PD, Zhao J, Cheng F, et al. Extracellular matrix/integrin signaling promotes resistance to combined inhibition of HER2 and PI3K in HER2+ breast cancer. Cancer Res. 2017;77:3280–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Luo J, Yao J-F, Deng X-F, Zheng X-D, Jia M, Wang Y-Q, et al. 14, 15-EET induces breast cancer cell EMT and cisplatin resistance by up-regulating integrin αvβ3 and activating FAK/PI3K/AKT signaling. J Exp Clin Cancer Res. 2018;37:23.

    PubMed  PubMed Central  Google Scholar 

  91. Nam K, Son S-h, Oh S, Jeon D, Kim H, Noh D-Y, et al. Binding of galectin-1 to integrin β1 potentiates drug resistance by promoting survivin expression in breast cancer cells. Oncotarget. 2017;8:35804.

    PubMed  PubMed Central  Google Scholar 

  92. Yin H-L, Wu C-C, Lin C-H, Chai C-Y, Hou M-F, Chang S-J, et al. β1 integrin as a prognostic and predictive marker in triple-negative breast cancer. Int J Mol Sci. 2016;17:1432.

    PubMed Central  Google Scholar 

  93. Jakubzig B, Baltes F, Henze S, Schlesinger M, Bendas G. Mechanisms of matrix-induced chemoresistance of breast cancer cells—deciphering novel potential targets for a cell sensitization. Cancers. 2018;10:495.

    CAS  PubMed Central  Google Scholar 

  94. Yuan J, Liu M, Yang L, Tu G, Zhu Q, Chen M, et al. Acquisition of epithelial-mesenchymal transition phenotype in the tamoxifen-resistant breast cancer cell: a new role for G protein-coupled estrogen receptor in mediating tamoxifen resistance through cancer-associated fibroblast-derived fibronectin and β1-integrin signaling pathway in tumor cells. Breast Cancer Res. 2015;17:69.

    PubMed  PubMed Central  Google Scholar 

  95. Ata R, Antonescu CN. Integrins and cell metabolism: an intimate relationship impacting cancer. Int J Mol Sci. 2017;18:189.

    PubMed Central  Google Scholar 

  96. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    CAS  PubMed  Google Scholar 

  97. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    CAS  PubMed  Google Scholar 

  99. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  100. Yang L, Hou Y, Yuan J, Tang S, Zhang H, Zhu Q, et al. Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways. Oncotarget. 2015;6:25755–69.

    PubMed  PubMed Central  Google Scholar 

  101. Koike T, Kimura N, Miyazaki K, Yabuta T, Kumamoto K, Takenoshita S, et al. Hypoxia induces adhesion molecules on cancer cells: A missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc Natl Acad Sci USA. 2004;101:8132–7.

    CAS  PubMed  Google Scholar 

  102. Kong T, Eltzschig HK, Karhausen J, Colgan SP, Shelley CS. Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of beta2 integrin gene expression. Proc Natl Acad Sci USA. 2004;101:10440–5.

    CAS  PubMed  Google Scholar 

  103. Keely S, Glover LE, MacManus CF, Campbell EL, Scully MM, Furuta GT, et al. Selective induction of integrin beta1 by hypoxia-inducible factor: implications for wound healing. FASEB J. 2009;23:1338–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ryu MH, Park HM, Chung J, Lee CH, Park HR. Hypoxia-inducible factor-1alpha mediates oral squamous cell carcinoma invasion via upregulation of alpha5 integrin and fibronectin. Biochem Biophys Res Commun. 2010;393:11–5.

    CAS  PubMed  Google Scholar 

  105. Tang CH, Lu ME. Adiponectin increases motility of human prostate cancer cells via adipoR, p38, AMPK, and NF-kappaB pathways. Prostate. 2009;69:1781–9.

    CAS  PubMed  Google Scholar 

  106. Chiu YC, Shieh DC, Tong KM, Chen CP, Huang KC, Chen PC, et al. Involvement of AdipoR receptor in adiponectin-induced motility and alpha2beta1 integrin upregulation in human chondrosarcoma cells. Carcinogenesis. 2009;30:1651–9.

    CAS  PubMed  Google Scholar 

  107. Ju JA, Godet I, Ye IC, Byun J, Jayatilaka H, Lee SJ, et al. Hypoxia selectively enhances integrin α5β1 receptor expression in breast cancer to promote metastasis. Mol Cancer Res. 2017;15:723–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sesé M, Fuentes P, Esteve-Codina A, Béjar E, McGrail K, Thomas G, et al. Hypoxia-mediated translational activation of ITGB3 in breast cancer cells enhances TGF-β signaling and malignant features in vitro and in vivo. Oncotarget. 2017;8:114856.

    PubMed  PubMed Central  Google Scholar 

  109. Brooks DLP, Schwab LP, Krutilina R, Parke DN, Sethuraman A, Hoogewijs D, et al. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer. 2016;15:26.

    PubMed  PubMed Central  Google Scholar 

  110. Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 2004;5:816.

    CAS  PubMed  Google Scholar 

  111. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Shao N, Lu Z, Zhang Y, Wang M, Li W, Hu Z, et al. Interleukin-8 upregulates integrin β3 expression and promotes estrogen receptor-negative breast cancer cell invasion by activating the PI3K/Akt/NF-κB pathway. Cancer Lett. 2015;364:165–72.

    CAS  PubMed  Google Scholar 

  113. Hedrick E, Lee SO, Safe S. The nuclear orphan receptor NR4A1 regulates beta1-integrin expression in pancreatic and colon cancer cells and can be targeted by NR4A1 antagonists. Mol Carcinog. 2017;56:2066–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Mon NN, Senga T, Ito S. Interleukin-1beta activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells. Oncol Lett. 2017;13:955–60.

    CAS  PubMed  Google Scholar 

  115. Felding-Habermann B, O’Toole TE, Smith JW, Fransvea E, Ruggeri ZM, Ginsberg MH, et al. Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci USA. 2001;98:1853–8.

    CAS  PubMed  Google Scholar 

  116. Felding-Habermann B, Habermann R, Saldivar E, Ruggeri ZM. Role of beta3 integrins in melanoma cell adhesion to activated platelets under flow. J Biol Chem. 1996;271:5892–900.

    CAS  PubMed  Google Scholar 

  117. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Bendeck MP, Irvin C, Reidy M, Smith L, Mulholland D, Horton M, et al. Smooth muscle cell matrix metalloproteinase production is stimulated via αvβ3 integrin. Arteriosclerosis, thrombosis, Vasc Biol. 2000;20:1467–72.

    CAS  Google Scholar 

  119. Thomas GJ, Poomsawat S, Lewis MP, Hart IR, Speight PM, Marshall JF. αvβ6 integrin upregulates matrix metalloproteinase 9 and promotes migration of normal oral keratinocytes. J Investig Dermatol. 2001;116:898–904.

    CAS  PubMed  Google Scholar 

  120. Ria R, Vacca A, Ribatti D, Di Raimondo F, Merchionne F, Dammacco F. Alpha (v) beta (3) integrin engagement enhances cell invasiveness in human multiple myeloma. Haematologica 2002;87:836–45.

    CAS  PubMed  Google Scholar 

  121. Rolli M, Fransvea E, Pilch J, Saven A, Felding-Habermann B. Activated integrin αvβ3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci. 2003;100:9482–7.

    CAS  PubMed  Google Scholar 

  122. Li W, Liu Z, Zhao C, Zhai L. Binding of MMP-9-degraded fibronectin to β6 integrin promotes invasion via the FAK-Src-related Erk1/2 and PI3K/Akt/Smad-1/5/8 pathways in breast cancer. Oncol Rep. 2015;34:1345–52.

    CAS  PubMed  Google Scholar 

  123. Morini M, Mottolese M, Ferrari N, Ghiorzo F, Buglioni S, Mortarini R, et al. The alpha 3 beta 1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MMP-9) activity. Int J Cancer. 2000;87:336–42.

    CAS  PubMed  Google Scholar 

  124. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15:540–55.

    CAS  PubMed  Google Scholar 

  125. Marsico G, Russo L, Quondamatteo F, Pandit A. Glycosylation and integrin regulation in cancer. Trends Cancer. 2018;4:537–52.

    CAS  PubMed  Google Scholar 

  126. Singh C, Shyanti RK, Singh V, Kale RK, Mishra JPN, Singh RP. Integrin expression and glycosylation patterns regulate cell-matrix adhesion and alter with breast cancer progression. Biochem Biophys Res Commun. 2018;499:374–80.

    CAS  PubMed  Google Scholar 

  127. Cui H, Lin Y, Yue L, Zhao X, Liu J. Differential expression of the alpha2,3-sialic acid residues in breast cancer is associated with metastatic potential. Oncol Rep. 2011;25:1365–71.

    CAS  PubMed  Google Scholar 

  128. Seales EC, Jurado GA, Brunson BA, Wakefield JK, Frost AR, Bellis SL. Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res. 2005;65:4645–52.

    CAS  PubMed  Google Scholar 

  129. Peng W, Zhou S, Mirzaei P, Mechref Y. Integrated transcriptomics, proteomics, and glycomics reveals the association between up-regulation of sialylated n-glycans/integrin and breast cancer brain metastasis. Sci Rep. 2019;9:1–13.

    Google Scholar 

  130. Fang R, Xu F, Shi H, Wu Y, Cao C, Li H, et al. LAMTOR5 raises abnormal initiation of O-glycosylation in breast cancer metastasis via modulating GALNT1 activity. Oncogene. 2020;39:2290–304. https://doi.org/10.1038/s41388-019-1146-2.

  131. Stipp CS. Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Exp Rev Mol Med. 2010;12:e3. https://doi.org/10.1017/S1462399409001355.

  132. Novitskaya V, Romanska H, Kordek R, Potemski P, Kusińska R, Parsons M, et al. Integrin α3β1–CD151 complex regulates dimerization of ErbB2 via RhoA. Oncogene. 2014;33:2779–89.

    CAS  PubMed  Google Scholar 

  133. Hong I-K, Jeoung D-I, Ha K-S, Kim Y-M, Lee H. Tetraspanin CD151 stimulates adhesion-dependent activation of Ras, Rac, and Cdc42 by facilitating molecular association between β1 integrins and small GTPases. J Biol Chem. 2012;287:32027–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kwon M, Park S, Choi JY, Oh E, Kim Y, Park Y, et al. Clinical significance of CD151 overexpression in subtypes of invasive breast cancer. Br J Cancer. 2012;106:923–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang XH, Richardson AL, Torres-Arzayus MI, Zhou P, Sharma C, Kazarov AR, et al. CD151 accelerates breast cancer by regulating α6 integrin function, signaling, and molecular organization. Cancer Res. 2008;68:3204–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Choi J, Kang M, Nam SH, Lee GH, Kim HJ, Ryu J, et al. Bidirectional signaling between TM4SF5 and IGF1R promotes resistance to EGFR kinase inhibitors. Lung Cancer. 2015;90:22–31.

    PubMed  Google Scholar 

  137. Lee JW. TM4SF5-mediated protein-protein networks and tumorigenic roles. BMB Rep. 2014;47:483–7.

    PubMed  PubMed Central  Google Scholar 

  138. Lee SA, Park KH, Lee JW. Modulation of signaling between TM4SF5 and integrins in tumor microenvironment. Front Biosci. 2011;16:1752–8.

    CAS  Google Scholar 

  139. Senese R, Cioffi F, de Lange P, Goglia F, Lanni A. Thyroid: biological actions of ‘nonclassical’thyroid hormones. J Endocrinol. 2014;221:R1–R12.

    CAS  PubMed  Google Scholar 

  140. Davis PJ, Goglia F, Leonard JL. Nongenomic actions of thyroid hormone. Nat Rev Endocrinol. 2016;12:111–21.

    CAS  PubMed  Google Scholar 

  141. Lin HY, Sun M, Tang HY, Lin C, Luidens MK, Mousa SA, et al. L-Thyroxine vs. 3,5,3’-triiodo-L-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell Physiol. 2009;296:C980–91.

    CAS  PubMed  Google Scholar 

  142. Uzair ID, Conte Grand J, Flamini MI, Sanchez AM. Molecular actions of thyroid hormone on breast cancer cell migration and invasion via cortactin/N-WASP. Front Endocrinol (Lausanne). 2019;10:139. https://doi.org/10.3389/fendo.2019.00139.

  143. Flamini MI, Uzair ID, Pennacchio GE, Neira FJ, Mondaca JM, Cuello-Carrión FD, et al. Thyroid hormone controls breast cancer cell movement via integrin αV/β3/SRC/FAK/PI3-kinases. Hormones Cancer. 2017;8:16–27.

    CAS  PubMed  Google Scholar 

  144. Lin H-Y, Chin Y-T, Nana AW, Shih Y-J, Lai H-Y, Tang H-Y, et al. Actions of l-thyroxine and Nano-diamino-tetrac (Nanotetrac) on PD-L1 in cancer cells. Steroids. 2016;114:59–67.

    PubMed  Google Scholar 

  145. Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Investig. 2011;121:3804–9.

    CAS  PubMed  Google Scholar 

  146. Sainio A, Jarvelainen H. Extracellular matrix macromolecules: potential tools and targets in cancer gene therapy. Mol Cell Ther. 2014;2:14.

    PubMed  PubMed Central  Google Scholar 

  147. Villanueva J, Herlyn M. Melanoma and the tumor microenvironment. Curr Oncol Rep. 2008;10:439–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Chikina AS, Rubtsova SN, Lomakina ME, Potashnikova DM, Vorobjev IA, Alexandrova AY. Transition from mesenchymal to bleb-based motility is predominantly exhibited by CD133-positive subpopulation of fibrosarcoma cells. Biol Cell. 2019;111:245–61.

    CAS  PubMed  Google Scholar 

  149. Clark AG, Vignjevic DM. Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol. 2015;36:13–22.

    CAS  PubMed  Google Scholar 

  150. Trepat X, Chen Z, Jacobson K. Cell migration. Compr Physiol. 2012;2:2369–92.

    PubMed  PubMed Central  Google Scholar 

  151. Gligorijevic B, Bergman A, Condeelis J. Multiparametric classification links tumor microenvironments with tumor cell phenotype. PLoS Biol. 2014;12:e1001995.

    PubMed  PubMed Central  Google Scholar 

  152. Patsialou A, Bravo-Cordero JJ, Wang Y, Entenberg D, Liu H, Clarke M, et al. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. Intravital. 2013;2:e25294.

    PubMed  PubMed Central  Google Scholar 

  153. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.

    CAS  PubMed  Google Scholar 

  154. Brezillon S, Pietraszek K, Maquart FX, Wegrowski Y. Lumican effects in the control of tumour progression and their links with metalloproteinases and integrins. FEBS J. 2013;280:2369–81.

    CAS  PubMed  Google Scholar 

  155. Blandin AF, Renner G, Lehmann M, Lelong-Rebel I, Martin S, Dontenwill M. beta1 integrins as therapeutic targets to disrupt hallmarks of cancer. Front Pharm. 2015;6:279.

    Google Scholar 

  156. Katoh D, Nagaharu K, Shimojo N, Hanamura N, Yamashita M, Kozuka Y, et al. Binding of alphavbeta1 and alphavbeta6 integrins to tenascin-C induces epithelial-mesenchymal transition-like change of breast cancer cells. Oncogenesis. 2013;2:e65.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Chung J, Bachelder RE, Lipscomb EA, Shaw LM, Mercurio AM. Integrin (alpha 6 beta 4) regulation of eIF-4E activity and VEGF translation: a survival mechanism for carcinoma cells. J Cell Biol. 2002;158:165–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Boudreau N, Myers C. Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment. Breast Cancer Res. 2003;5:140–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Kim S, Bell K, Mousa SA, Varner JA. Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol. 2000;156:1345–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Senger DR, Claffey KP, Benes JE, Perruzzi CA, Sergiou AP, Detmar M. Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proc Natl Acad Sci USA. 1997;94:13612–7.

    CAS  PubMed  Google Scholar 

  161. Pang MF, Siedlik MJ, Han S, Stallings-Mann M, Radisky DC, Nelson CM. Tissue stiffness and hypoxia modulate the integrin-linked kinase ILK to control breast cancer stem-like cells. Cancer Res. 2016;76:5277–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Ivanova IA, Vermeulen JF, Ercan C, Houthuijzen JM, Saig FA, Vlug EJ, et al. FER kinase promotes breast cancer metastasis by regulating alpha6- and beta1-integrin-dependent cell adhesion and anoikis resistance. Oncogene. 2013;32:5582–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Ahmed KM, Zhang H, Park CC. NF-kappaB regulates radioresistance mediated by beta1-integrin in three-dimensional culture of breast cancer cells. Cancer Res. 2013;73:3737–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Nam JM, Ahmed KM, Costes S, Zhang H, Onodera Y, Olshen AB, et al. beta1-Integrin via NF-kappaB signaling is essential for acquisition of invasiveness in a model of radiation treated in situ breast cancer. Breast Cancer Res. 2013;15:R60.

    PubMed  PubMed Central  Google Scholar 

  165. Sorensen BH, Rasmussen LJ, Broberg BS, Klausen TK, Sauter DP, Lambert IH, et al. Integrin beta1, osmosensing, and chemoresistance in mouse ehrlich carcinoma cells. Cell Physiol Biochem. 2015;36:111–32.

    CAS  PubMed  Google Scholar 

  166. Yuan J, Liu M, Yang L, Tu G, Zhu Q, Chen M, et al. Acquisition of epithelial-mesenchymal transition phenotype in the tamoxifen-resistant breast cancer cell: a new role for G protein-coupled estrogen receptor in mediating tamoxifen resistance through cancer-associated fibroblast-derived fibronectin and beta1-integrin signaling pathway in tumor cells. Breast Cancer Res. 2015;17:69.

    PubMed  PubMed Central  Google Scholar 

  167. Momeny M, Moghaddaskho F, Gortany NK, Yousefi H, Sabourinejad Z, Zarrinrad G, et al. Blockade of vascular endothelial growth factor receptors by tivozanib has potential anti-tumour effects on human glioblastoma cells. Sci Rep. 2017;7:44075.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Avraamides C, Garmy-Susini B, Varner J. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8:604–17. https://doi.org/10.1038/nrc2353.

  169. Castañeda-Gill JM, Vishwanatha JK. Antiangiogenic mechanisms and factors in breast cancer treatment. J Carcinog. 2016;15:1. https://doi.org/10.4103/1477-3163.176223.

  170. Foubert P, Varner JA. Integrins in tumor angiogenesis and lymphangiogenesis. Methods Mol Biol. 2012;757:471–86. https://doi.org/10.1007/978-1-61779-166-6_27.

  171. Elaimy AL, Mercurio AM. Convergence of VEGF and YAP/TAZ signaling: Implications for angiogenesis and cancer biology. J Sci Signal. 2018;11:eaau1165.

    Google Scholar 

  172. Goel HL, Mercurio AM. Enhancing integrin function by VEGF/neuropilin signaling: implications for tumor biology. J Cell Adhes Migr. 2012;6:554–60.

    Google Scholar 

  173. Faycal CA, Brambilla E, Agorreta J, Lepeltier N, Jacquet T, Lemaître N, et al. The sVEGFR1-i13 splice variant regulates a β1 integrin/VEGFR autocrine loop involved in the progression and the response to anti-angiogenic therapies of squamous cell lung carcinoma. J Br J Cancer. 2018;118:1596.

    Google Scholar 

  174. Hayashi H, Sano H, Seo S, Kume T. The Foxc2 transcription factor regulates angiogenesis via induction of integrin β3 expression. J J Biol Chem. 2008;283:23791–800.

    CAS  Google Scholar 

  175. Jiang L, Luan Y, Miao X, Sun C, Li K, Huang Z, et al. Platelet releasate promotes breast cancer growth and angiogenesis via VEGF–integrin cooperative signalling. J Br J Cancer. 2017;117:695.

    CAS  Google Scholar 

  176. Shahidi M, Vatanmakanian M, Arami MK, Sadeghi Shirazi F, Esmaeili N, Hydarporian S, et al. A comparative study between platelet-rich plasma and platelet-poor plasma effects on angiogenesis. Med Mol Morphol. 2018;51:21–31.

    PubMed  Google Scholar 

  177. Vlahakis NE, Young BA, Atakilit A, Hawkridge AE, Issaka RB, Boudreau N, et al. Integrin α9β1 directly binds to vascular endothelial growth factor (VEGF)-A and contributes to VEGF-A-induced angiogenesis. J J Biol Chem. 2007;282:15187–96.

    CAS  Google Scholar 

  178. Ramovs V, Secades P, Song J-Y, Thijssen B, Kreft M, Sonnenberg A. Absence of integrin α3β1 promotes the progression of HER2-driven breast cancer in vivo. J Breast Cancer Res. 2019;21:63.

    Google Scholar 

  179. Siddharth S, Nayak A, Das S, Nayak D, Panda J, Wyatt MD, et al. The soluble nectin-4 ecto-domain promotes breast cancer induced angiogenesis via endothelial Integrin-β4. J Int J Biochem Cell Biol. 2018;102:151–60.

    CAS  Google Scholar 

  180. Smuczek B, Santos EdS, Siqueira AS, Pinheiro JJ, Freitas VM, et al. The laminin-derived peptide C16 regulates GPNMB expression and function in breast cancer. J Exp Cell Res. 2017;358:323–34.

    CAS  Google Scholar 

  181. Rose A. The role of GPNMB in breast tumor progression. Montreal, Canada: McGill University; 2011.

  182. Ghatak S, Niland S, Schulz JN, Wang F, Eble JA, Leitges M, et al. Role of Integrins alpha1beta1 and alpha2beta1 in Wound and Tumor Angiogenesis in Mice. Am J Pathol. 2016;186:3011–27.

    CAS  PubMed  Google Scholar 

  183. Hirota S, Clements TP, Tang LK, Morales JE, Lee HS, Oh SP, et al. Neuropilin 1 balances beta8 integrin-activated TGFbeta signaling to control sprouting angiogenesis in the brain. Development 2015;142:4363–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. You WK, Yotsumoto F, Sakimura K, Adams RH, Stallcup WB. NG2 proteoglycan promotes tumor vascularization via integrin-dependent effects on pericyte function. Angiogenesis 2014;17:61–76.

    CAS  PubMed  Google Scholar 

  185. Chen Q, Hongu T, Sato T, Zhang Y, Ali W, Cavallo JA, et al. Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Sci Signal. 2012;5:ra79.

    PubMed  PubMed Central  Google Scholar 

  186. Sharma C, Rabinovitz I, Hemler ME. Palmitoylation by DHHC3 is critical for the function, expression, and stability of integrin alpha6beta4. Cell Mol Life Sci. 2012;69:2233–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. da Silva RG, Tavora B, Robinson SD, Reynolds LE, Szekeres C, Lamar J, et al. Endothelial alpha3beta1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. Am J Pathol. 2010;177:1534–48.

    PubMed  PubMed Central  Google Scholar 

  188. van der Flier A, Badu-Nkansah K, Whittaker CA, Crowley D, Bronson RT, Lacy-Hulbert A, et al. Endothelial alpha5 and alphav integrins cooperate in remodeling of the vasculature during development. Development. 2010;137:2439–49.

    PubMed  PubMed Central  Google Scholar 

  189. Pramanik D, Majeti BK, Mondal G, Karmali PP, Sistla R, Ramprasad OG, et al. Lipopeptide with a RGDK tetrapeptide sequence can selectively target genes to proangiogenic alpha5beta1 integrin receptor and mouse tumor vasculature. J Med Chem. 2008;51:7298–302.

    CAS  PubMed  Google Scholar 

  190. Hynes RO. A reevaluation of integrins as regulators of angiogenesis. Nat Med. 2002;8:918–21.

    CAS  PubMed  Google Scholar 

  191. Germain M, De Arcangelis A, Robinson SD, Baker M, Tavora B, D’Amico G, et al. Genetic ablation of the alpha 6-integrin subunit in Tie1Cre mice enhances tumour angiogenesis. J Pathol. 2010;220:370–81.

    CAS  PubMed  Google Scholar 

  192. Doñate F, Parry GC, Shaked Y, Hensley H, Guan X, Beck I, et al. Pharmacology of the novel antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2): observation of a U-shaped dose-response curve in several preclinical models of angiogenesis and tumor growth. J Clin Cancer Res. 2008;14:2137–44.

    Google Scholar 

  193. Yao H, Veine DM, Livant DL. Therapeutic inhibition of breast cancer bone metastasis progression and lung colonization: breaking the vicious cycle by targeting α5β1 integrin. J Breast Cancer Res. 2016;157:489–501.

    CAS  Google Scholar 

  194. Dewangan J, Kaushik S, Rath SK, Balapure AK. Centchroman regulates breast cancer angiogenesis via inhibition of HIF-1α/VEGFR2 signalling axis. J Life Sci. 2018;193:9–19.

    CAS  Google Scholar 

  195. Ricart AD, Tolcher AW, Liu G, Holen K, Schwartz G, Albertini M, et al. Volociximab, a chimeric monoclonal antibody that specifically binds α5β1 integrin: a phase I, pharmacokinetic, and biological correlative study. J Clin Cancer Res. 2008;14:7924–9.

    CAS  Google Scholar 

  196. Alghisi GC, Rüegg C. Vascular integrins in tumor angiogenesis: mediators and therapeutic targets. J Endothelium. 2006;13:113–35.

    CAS  Google Scholar 

  197. Huang R, Li J, Kebebe D, Wu Y, Zhang B, Liu Z. Cell penetrating peptides functionalized gambogic acid-nanostructured lipid carrier for cancer treatment. J Drug Deliv. 2018;25:757–65.

    CAS  Google Scholar 

  198. Alday-Parejo B, Stupp R, Rüegg C. Are integrins still practicable targets for anti-cancer therapy? Cancers (Basel). 2019;11:978. https://doi.org/10.3390/cancers11070978.

  199. Kapp TG, Rechenmacher F, Sobahi TR, Kessler H. Integrin modulators: a patent review. Expert Opin Ther Pat. 2013;23:1273–95.

    CAS  PubMed  Google Scholar 

  200. Hersey P, Sosman J, O’Day S, Richards J, Bedikian A, Gonzalez R, et al. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or - dacarbazine in patients with stage IV metastatic melanoma. Cancer. 2010;116:1526–34.

    CAS  PubMed  Google Scholar 

  201. Moschos SJ, Sander CA, Wang W, Reppert SL, Drogowski LM, Jukic DM, et al. Pharmacodynamic (phase 0) study using etaracizumab in advanced melanoma. J Immunother. 2010;33:316–25.

    CAS  PubMed  Google Scholar 

  202. Wirth M, Heidenreich A, Gschwend JE, Gil T, Zastrow S, Laniado M, et al. A multicenter phase 1 study of EMD 525797 (DI17E6), a novel humanized monoclonal antibody targeting αv integrins, in progressive castration-resistant prostate cancer with bone metastases after chemotherapy. Eur Urol. 2014;65:897–904. https://doi.org/10.1016/j.eururo.2013.05.051.

  203. O’Day SJ, Pavlick AC, Albertini MR, Hamid O, Schalch H, Lang Z, et al. Clinical and pharmacologic evaluation of two dose levels of intetumumab (CNTO 95) in patients with melanoma or angiosarcoma. Investig N. Drugs. 2012;30:1074–81.

    Google Scholar 

  204. Hussain M, Le Moulec S, Gimmi C, Bruns R, Straub J, Miller K. Differential effect on bone lesions of targeting integrins: randomized phase II trial of abituzumab in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res. 2016;22:3192–200.

    CAS  PubMed  Google Scholar 

  205. Marelli UK, Rechenmacher F, Sobahi TRA, Mas-Moruno C, Kessler H. Tumor targeting via integrin ligands. Front Oncol. 2013;3:222.

    PubMed  PubMed Central  Google Scholar 

  206. Cheng Y, Ji Y. RGD-modified polymer and liposome nanovehicles: recent research progress for drug delivery in cancer therapeutics. Eur J Pharm Sci. 2019;128:8–17.

    CAS  PubMed  Google Scholar 

  207. Gajbhiye K, Gajbhiye V, Siddiqui IA, Gajbhiye J. cRGD functionalised nanocarriers for targeted delivery of bioactives. J Drug Target. 2019;27:111–24.

    CAS  PubMed  Google Scholar 

  208. Danhier F, Le Breton A, Préat V. RGD-based strategies to target alpha (v) beta (3) integrin in cancer therapy and diagnosis. Mol Pharmaceutics. 2012;9:2961–73.

    CAS  Google Scholar 

  209. Doolittle E, Peiris PM, Doron G, Goldberg A, Tucci S, Rao S, et al. Spatiotemporal targeting of a dual-ligand nanoparticle to cancer metastasis. ACS Nano. 2015;9:8012–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Ruegg C, Dormond O, Mariotti A. Endothelial cell integrins and COX-2: mediators and therapeutic targets of tumor angiogenesis. Biochim Biophys Acta. 2004;1654:51–67.

    CAS  PubMed  Google Scholar 

  211. Metwaly HA, El-Gayar AM, El-Shishtawy MM. Inhibition of the signaling pathway of syndecan-1 by synstatin: A promising anti-integrin inhibitor of angiogenesis and proliferation in HCC in rats. Arch Biochem Biophys. 2018;652:50–8.

    CAS  PubMed  Google Scholar 

  212. Touihri-Barakati I, Kallech-Ziri O, Ayadi W, Kovacic H, Hanchi B, Hosni K, et al. Cucurbitacin B purified from Ecballium elaterium (L.) A. Rich from Tunisia inhibits alpha5beta1 integrin-mediated adhesion, migration, proliferation of human glioblastoma cell line and angiogenesis. Eur J Pharm. 2017;797:153–61.

    CAS  Google Scholar 

  213. Goodman SL, Picard M. Integrins as therapeutic targets. Trends Pharm Sci. 2012;33:405–12.

    CAS  PubMed  Google Scholar 

  214. Tolomelli A, Galletti P, Baiula M, Giacomini D. Can integrin agonists have cards to play against cancer? a literature survey of small molecules integrin activators. Cancers. 2017;9:78. https://doi.org/10.3390/cancers9070078.

  215. Mould AP, Craig SE, Byron SK, Humphries MJ, Jowitt TA. Disruption of integrin-fibronectin complexes by allosteric but not ligand-mimetic inhibitors. Biochem J. 2014;464:301–13.

    CAS  PubMed  Google Scholar 

  216. Travis MA, Humphries JD, Humphries MJ. An unraveling tale of how integrins are activated from within. Trends Pharm Sci. 2003;24:192–7.

    CAS  PubMed  Google Scholar 

  217. Loges S, Schmidt T, Carmeliet P. Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug c andidates. Genes Cancer. 2010;1:12–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Vicente-Manzanares M, Sanchez-Madrid F. Targeting the integrin interactome in human disease. Curr Opin Cell Biol. 2018;55:17–23.

    CAS  PubMed  Google Scholar 

  219. Jin H, Su J, Garmy-Susini B, Kleeman J, Varner J. Integrin alpha4beta1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res. 2006;66:2146–52.

    CAS  PubMed  Google Scholar 

  220. Liu Z, Wang F. Development of RGD-based radiotracers for tumor imaging and therapy: translating from bench to bedside. Curr Mol Med. 2013;13:1487–505.

    CAS  PubMed  Google Scholar 

  221. Moral ME, Siahaan TJ. Conjugates of cell adhesion peptides for therapeutics and diagnostics against cancer and autoimmune diseases. Curr Top medicinal Chem. 2017;17:3425–43.

    CAS  Google Scholar 

  222. Rüegg C, Alghisi GC. Vascular integrins: therapeutic and imaging targets of tumor angiogenesis. Recent Results Cancer Res. 2010;180:83–101. https://doi.org/10.1007/978-3-540-78281-0_6.

  223. Maltsev OV, Marelli UK, Kapp TG, Di Leva FS, Di Maro S, Nieberler M, et al. Stable peptides instead of stapled peptides: highly potent αvβ6‐selective integrin ligands. Angew Chem Int Ed. 2016;55:1535–9.

    CAS  Google Scholar 

  224. Radisky ES, Radisky DC. Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Front Biosci (Landmark Ed). 2015;20:1144–63. https://doi.org/10.2741/4364.

  225. Wei R, Wong JPC, Kwok HF. Osteopontin—a promising biomarker for cancer therapy. J Cancer. 2017;8:2173–83.

    PubMed  PubMed Central  Google Scholar 

  226. Kale S, et al. Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via alpha9beta1 integrin. Oncogene. 2015;34:5408–10.

    CAS  PubMed  Google Scholar 

  227. Kovacheva M, Zepp M, Schraad M, Berger S, Berger MR. Conditional knockdown of osteopontin inhibits breast cancer skeletal metastasis. Int J Mol Sci. 2019;20:4918. https://doi.org/10.3390/ijms20194918.

  228. Pio GM, Xia Y, Piaseczny MM, Chu JE, Allan AL. Soluble bone-derived osteopontin promotes migration and stem-like behavior of breast cancer cells. PLOS ONE. 2017;12:e0177640.

  229. Gothlin Eremo A, et al. Evaluation of SPP1/osteopontin expression as predictor of recurrence in tamoxifen treated breast cancer. Sci Rep. 2020;10:1451.

    PubMed  PubMed Central  Google Scholar 

  230. Sayyad MR, et al. Syndecan-1 facilitates breast cancer metastasis to the brain. Breast Cancer Res Treat. 2019;178:35–49.

    CAS  PubMed  Google Scholar 

  231. Malek-Hosseini Z, Jelodar S, Talei A, Ghaderi A, Doroudchi M. Elevated syndecan-1 levels in the sera of patients with breast cancer correlate with tumor size. Breast Cancer (Tokyo, Japan). 2017;24:742–7. https://doi.org/10.1007/s12282-017-0773-0.

  232. Cordone I, et al. Overexpression of syndecan-1, MUC-1, and putative stem cell markers in breast cancer leptomeningeal metastasis: a cerebrospinal fluid flow cytometry study. Breast Cancer Res. 2017;19:46.

    PubMed  PubMed Central  Google Scholar 

  233. Ibrahim SA, et al. Syndecan-1 (CD138) modulates triple-negative breast cancer stem cell properties via regulation of LRP-6 and IL-6-mediated STAT3 signaling. PLoS ONE. 2013;8:e85737.

    PubMed  PubMed Central  Google Scholar 

  234. Hassan H, et al. Syndecan-1 modulates beta-integrin-dependent and interleukin-6-dependent functions in breast cancer cell adhesion, migration, and resistance to irradiation. Febs J. 2013;280:2216–27.

    CAS  PubMed  Google Scholar 

  235. Mardilovich K, Shaw LM. Hypoxia regulates insulin receptor substrate-2 expression to promote breast carcinoma cell survival and invasion. Cancer Res. 2009;69:8894–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Porter HA, et al. IRS1 is highly expressed in localized breast tumors and regulates the sensitivity of breast cancer cells to chemotherapy, while IRS2 is highly expressed in invasive breast tumors. Cancer Lett. 2013;338:239–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Li Z, et al. Upregulation of IRS1 enhances IGF1 response in Y537S and D538G ESR1 mutant breast cancer cells. Endocrinology. 2018;159:285–96.

    CAS  PubMed  Google Scholar 

  238. Casalou C, Faustino A, Barral DC. Arf proteins in cancer cell migration. Small GTPases. 2016;7:270–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Annis MG, et al. Integrin-uPAR signaling leads to FRA-1 phosphorylation and enhanced breast cancer invasion. Breast Cancer Res. 2018;20:9.

    PubMed  PubMed Central  Google Scholar 

  240. Indira Chandran V, et al. HER2 and uPAR cooperativity contribute to metastatic phenotype of HER2-positive breast cancer. Oncoscience. 2015;2:207–24.

    PubMed  Google Scholar 

  241. Fournier HN, et al. Integrin cytoplasmic domain-associated protein 1alpha (ICAP-1alpha) interacts directly with the metastasis suppressor nm23-H2, and both proteins are targeted to newly formed cell adhesion sites upon integrin engagement. J Biol Chem. 2002;277:20895–902.

    CAS  PubMed  Google Scholar 

  242. Cen J, Feng L, Ke H, Bao L, Li LZ, Tanaka Y, et al. Exosomal thrombospondin-1 disrupts the integrity of endothelial intercellular junctions to facilitate breast cancer cell metastasis. Cancers (Basel). 2019;11:1946. https://doi.org/10.3390/cancers11121946.

  243. Gil-Bazo I, et al. [Von Willebrand factor as an intermediate between hemostasis and angiogenesis of tumor origin]. Rev Med Univ Navar. 2003;47:22–8.

    CAS  Google Scholar 

  244. Li L, et al. The role of talin2 in breast cancer tumorigenesis and metastasis. Oncotarget. 2017;8:106876–87.

    PubMed  PubMed Central  Google Scholar 

  245. Chia WJ, Tang BL. Emerging roles for Rab family GTPases in human cancer. Biochim Biophys Acta. 2009;1795:110–6.

    CAS  PubMed  Google Scholar 

  246. Sato H, Higashi S, Miyazaki K. Amino-terminal fragments of laminin gamma2 chain stimulate migration of metastatic breast cancer cells by interacting with CD44. Clin Exp Metastasis. 2015;32:405–15.

    CAS  PubMed  Google Scholar 

  247. Berardi DE, et al. Laminin modulates the stem cell population in LM05-E murine breast cancer cells through the activation of the MAPK/ERK pathway. Cancer Res Treat. 2017;49:869–79.

    CAS  PubMed  Google Scholar 

  248. Baltes F, et al. beta1-Integrin binding to collagen type 1 transmits breast cancer cells into chemoresistance by activating ABC efflux transporters. Biochim Biophys Acta Mol Cell Res. 2020;1867:118663.

    CAS  PubMed  Google Scholar 

  249. Badaoui M, et al. Collagen type 1 promotes survival of human breast cancer cells by overexpressing Kv10.1 potassium and Orai1 calcium channels through DDR1-dependent pathway. Oncotarget. 2018;9:24653–71.

    PubMed  Google Scholar 

  250. Park H, Helfman DM. Up-regulated fibronectin in 3D culture facilitates spreading of triple negative breast cancer cells on 2D through integrin beta-5 and Src. Sci Rep. 2019;9:19950.

    CAS  PubMed Central  Google Scholar 

  251. Kwon A, Chae IH, You E, Kim SH, Ahn SY, Lee OJ, et al. Extra domain A-containing fibronectin expression in Spin90-deficient fibroblasts mediates cancer-stroma interaction and promotes breast cancer progression. J Cell Physiol. 2020;235:4494–4507. https://doi.org/10.1002/jcp.29326.

  252. Li D, et al. The NRIF3 family of transcriptional coregulators induces rapid and profound apoptosis in breast cancer cells. Mol Cell Biol. 2004;24:3838–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Kracun D, et al. The beta3-integrin binding protein beta3-endonexin is a novel negative regulator of hypoxia-inducible factor-1. Antioxid Redox Signal. 2014;20:1964–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Juliano R, et al. Integrin regulation of cell signalling and motility. Portland Press Ltd; 2004.

  255. Lo SH, Weisberg E, Chen LB. Tensin: a potential link between the cytoskeleton and signal transduction. Bioessays. 1994;16:817–23.

    CAS  PubMed  Google Scholar 

  256. Peeney D, et al. TIMP-2 suppresses tumor growth and metastasis in murine model of triple-negative breast cancer. Carcinogenesis. 2019;41:313–325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh K. Alahari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, H., Vatanmakanian, M., Mahdiannasser, M. et al. Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene 40, 1043–1063 (2021). https://doi.org/10.1038/s41388-020-01588-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01588-2

This article is cited by

Search

Quick links