Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Induction of APOBEC3B expression by chemotherapy drugs is mediated by DNA-PK-directed activation of NF-κB

Abstract

The mutagenic APOBEC3B (A3B) cytosine deaminase is frequently over-expressed in cancer and promotes tumour heterogeneity and therapy resistance. Hence, understanding the mechanisms that underlie A3B over-expression is important, especially for developing therapeutic approaches to reducing A3B levels, and consequently limiting cancer mutagenesis. We previously demonstrated that A3B is repressed by p53 and p53 mutation increases A3B expression. Here, we investigate A3B expression upon treatment with chemotherapeutic drugs that activate p53, including 5-fluorouracil, etoposide and cisplatin. Contrary to expectation, these drugs induced A3B expression and concomitant cellular cytosine deaminase activity. A3B induction was p53-independent, as chemotherapy drugs stimulated A3B expression in p53 mutant cells. These drugs commonly activate ATM, ATR and DNA-PKcs. Using specific inhibitors and gene knockdowns, we show that activation of DNA-PKcs and ATM by chemotherapeutic drugs promotes NF-κB activity, with consequent recruitment of NF-κB to the A3B gene promoter to drive A3B expression. Further, we find that A3B knockdown re-sensitises resistant cells to cisplatin, and A3B knockout enhances sensitivity to chemotherapy drugs. Our data highlight a role for A3B in resistance to chemotherapy and indicate that stimulation of A3B expression by activation of DNA repair and NF-κB pathways could promote cancer mutations and expedite chemoresistance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: APOBEC3B expression is associated with poor patient response to chemotherapy in breast cancer.
Fig. 2: Cancer chemotherapy drugs promote APOBEC3B expression in a p53-independent manner.
Fig. 3: Chemotherapeutic drugs stimulate A3B cytidine deaminase activity in cancer cells.
Fig. 4: NF-κB mediates induction of APOBEC3B gene expression by chemotherapy drugs.
Fig. 5: Stimulation of APOBEC3B expression is promoted by DNA-PK directed NF-κB activation.
Fig. 6: The DNA-PKcs/AKT/NF-κB axis is constitutively active and APOBEC3B expression is increased in cisplatin-resistant ovarian cancer cells.

References

  1. 1.

    Salter JD, Bennett RP, Smith HC. The APOBEC protein family: united by structure, divergent in function. Trends Biochem Sci. 2016;41:578–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Venkatesan S, Rosenthal R, Kanu N, McGranahan N, Bartek J, Quezada SA, et al. Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann Oncol. 2018;29:563–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Nowarski R, Wilner OI, Cheshin O, Shahar OD, Kenig E, Baraz L, et al. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair. Blood. 2012;120:366–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Taylor BJ, Nik-Zainal S, Wu YL, Stebbings LA, Raine K, Campbell PJ, et al. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. Elife. 2013;2:e00534.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Burns MB, Temiz NA, Harris RS. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet. 2013;45:977–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med. 2015;7:283ra254.

    Google Scholar 

  7. 7.

    Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet. 2013;45:970–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, Leonard B, et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature. 2013;494:366–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC, Yates L, et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science. 2014;346:251–6.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Poulos RC, Wong YT, Ryan R, Pang H, Wong JWH. Analysis of 7,815 cancer exomes reveals associations between mutational processes and somatic driver mutations. PLoS Genet. 2018;14:e1007779.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Roper N, Gao S, Maity TK, Banday AR, Zhang X, Venugopalan A, et al. APOBEC mutagenesis and copy-number alterations are drivers of proteogenomic tumor evolution and heterogeneity in metastatic thoracic tumors. Cell Rep. 2019;26:2651–66. e2656.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Law EK, Sieuwerts AM, LaPara K, Leonard B, Starrett GJ, Molan AM, et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci Adv. 2016;2:e1601737.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Schmitt C, Lucius R, Synowitz M, Held-Feindt J, Hattermann K. APOBEC3B is expressed in human glioma, and influences cell proliferation and temozolomide resistance. Oncol Rep. 2018;40:2742–9.

    CAS  PubMed  Google Scholar 

  14. 14.

    Refsland EW, Stenglein MD, Shindo K, Albin JS, Brown WL, Harris RS. Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res. 2010;38:4274–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Periyasamy M, Singh AK, Gemma C, Kranjec C, Farzan R, Leach DA, et al. p53 controls expression of the DNA deaminase APOBEC3B to limit its potential mutagenic activity in cancer cells. Nucleic Acids Res. 2017;45:11056–69.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Periyasamy M, Patel H, Lai CF, Nguyen VTM, Nevedomskaya E, Harrod A, et al. APOBEC3B-mediated cytidine deamination is required for estrogen receptor action in breast cancer. Cell Rep. 2015;13:108–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Menendez D, Nguyen TA, Snipe J, Resnick MA. The cytidine deaminase APOBEC3 family is subject to transcriptional regulation by p53. Mol cancer Res: MCR. 2017;15:735–43.

    CAS  PubMed  Google Scholar 

  18. 18.

    Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H, et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci USA. 2006;103:10660–5.

    CAS  PubMed  Google Scholar 

  19. 19.

    Andrysik Z, Galbraith MD, Guarnieri AL, Zaccara S, Sullivan KD, Pandey A, et al. Identification of a core TP53 transcriptional program with highly distributed tumor suppressive activity. Genome Res. 2017;27:1645–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Green AM, Weitzman MD. The spectrum of APOBEC3 activity: from anti-viral agents to anti-cancer opportunities. DNA Repair. 2019;83:102700.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Stenglein MD, Burns MB, Li M, Lengyel J, Harris RS. APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol. 2010;17:222–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    McDaniel YZ, Wang D, Love RP, Adolph MB, Mohammadzadeh N, Chelico L, et al. Deamination hotspots among APOBEC3 family members are defined by both target site sequence context and ssDNA secondary structure. Nucleic Acids Res. 2020;48:1353–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kubo K, Ide H, Wallace SS, Kow YW. A novel, sensitive, and specific assay for abasic sites, the most commonly produced DNA lesion. Biochemistry. 1992;31:3703–8.

    CAS  PubMed  Google Scholar 

  24. 24.

    Wyatt MD, Wilson DM 3rd. Participation of DNA repair in the response to 5-fluorouracil. Cell Mol Life Sci. 2009;66:788–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Wilson DM 3rd, Seidman MM. A novel link to base excision repair? Trends Biochem Sci. 2010;35:247–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Pommier Y, Huang SY, Gao R, Das BB, Murai J, Marchand C. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair. 2014;19:114–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Beshiri ML, Holmes KB, Richter WF, Hess S, Islam AB, Yan Q, et al. Coordinated repression of cell cycle genes by KDM5A and E2F4 during differentiation. Proc Natl Acad Sci USA. 2012;109:18499–504.

    PubMed  Google Scholar 

  28. 28.

    Leonard B, McCann JL, Starrett GJ, Kosyakovsky L, Luengas EM, Molan AM, et al. The PKC/NF-kappaB signaling pathway induces APOBEC3B expression in multiple human cancers. Cancer Res. 2015;75:4538–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Maruyama W, Shirakawa K, Matsui H, Matsumoto T, Yamazaki H, Sarca AD, et al. Classical NF-kappaB pathway is responsible for APOBEC3B expression in cancer cells. Biochem Biophys Res Commun. 2016;478:1466–71.

    CAS  PubMed  Google Scholar 

  30. 30.

    Strickson S, Campbell DG, Emmerich CH, Knebel A, Plater L, Ritorto MS, et al. The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. Biochem J. 2013;451:427–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Podolin PL, Callahan JF, Bolognese BJ, Li YH, Carlson K, Davis TG, et al. Attenuation of murine collagen-induced arthritis by a novel, potent, selective small molecule inhibitor of IkappaB Kinase 2, TPCA-1 (2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide), occurs via reduction of proinflammatory cytokines and antigen-induced T cell proliferation. J Pharm Exp Ther. 2005;312:373–81.

    CAS  Google Scholar 

  32. 32.

    Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 2017;66:801–17.

    CAS  PubMed  Google Scholar 

  33. 33.

    Hadian K, Krappmann D. Signals from the nucleus: activation of NF-kappaB by cytosolic ATM in the DNA damage response. Sci Signal. 2011;4:pe2.

    PubMed  Google Scholar 

  34. 34.

    Liu L, Kwak YT, Bex F, Garcia-Martinez LF, Li XH, Meek K, et al. DNA-dependent protein kinase phosphorylation of IkappaB alpha and IkappaB beta regulates NF-kappaB DNA binding properties. Mol Cell Biol. 1998;18:4221–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Bozulic L, Surucu B, Hynx D, Hemmings BA. PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell. 2008;30:203–13.

    CAS  PubMed  Google Scholar 

  36. 36.

    Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-kappaB signaling pathways. Nat Immunol. 2011;12:695–708.

    CAS  PubMed  Google Scholar 

  37. 37.

    Gavande NS, VanderVere-Carozza PS, Hinshaw HD, Jalal SI, Sears CR, Pawelczak KS, et al. DNA repair targeted therapy: The past or future of cancer treatment? Pharm Ther. 2016;160:65–83.

    CAS  Google Scholar 

  38. 38.

    Peng Y, Woods RG, Beamish H, Ye R, Lees-Miller SP, Lavin MF, et al. Deficiency in the catalytic subunit of DNA-dependent protein kinase causes down-regulation of ATM. Cancer Res. 2005;65:1670–7.

    CAS  PubMed  Google Scholar 

  39. 39.

    Hong SP, Chan TE, Lombardo Y, Corleone G, Rotmensz N, Bravaccini S, et al. Single-cell transcriptomics reveals multi-step adaptations to endocrine therapy. Nat Commun. 2019;10:3840.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Gadducci A, Guarneri V, Peccatori FA, Ronzino G, Scandurra G, Zamagni C, et al. Current strategies for the targeted treatment of high-grade serous epithelial ovarian cancer and relevance of BRCA mutational status. J Ovarian Res. 2019;12:9.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Stronach EA, Chen M, Maginn EN, Agarwal R, Mills GB, Wasan H, et al. DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance. Neoplasia. 2011;13:1069–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Langdon SP, Lawrie SS, Hay FG, Hawkes MM, McDonald A, Hayward IP, et al. Characterization and properties of nine human ovarian adenocarcinoma cell lines. Cancer Res. 1988;48:6166–72.

    CAS  PubMed  Google Scholar 

  43. 43.

    Basu S, Rosenzweig KR, Youmell M, Price BD. The DNA-dependent protein kinase participates in the activation of NF kappa B following DNA damage. Biochem Biophys Res Commun. 1998;247:79–83.

    CAS  PubMed  Google Scholar 

  44. 44.

    Panta GR, Kaur S, Cavin LG, Cortes ML, Mercurio F, Lothstein L, et al. ATM and the catalytic subunit of DNA-dependent protein kinase activate NF-kappaB through a common MEK/extracellular signal-regulated kinase/p90(rsk) signaling pathway in response to distinct forms of DNA damage. Mol Cell Biol. 2004;24:1823–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Sabatel H, Pirlot C, Piette J, Habraken Y. Importance of PIKKs in NF-kappaB activation by genotoxic stress. Biochem Pharm. 2011;82:1371–83.

    CAS  PubMed  Google Scholar 

  46. 46.

    Fang Y, Chai Z, Wang D, Kuang T, Wu W, Lou W. DNA-PKcs deficiency sensitizes the human hepatoma HepG2 cells to cisplatin and 5-fluorouracil through suppression of the PI3K/Akt/NF-kappaB pathway. Mol Cell Biochem. 2015;399:269–78.

    CAS  PubMed  Google Scholar 

  47. 47.

    Rajagopalan S, Moyle MW, Joosten I, Long EO. DNA-PKcs controls an endosomal signaling pathway for a proinflammatory response by natural killer cells. Sci Signal. 2010;3:ra14.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Faltas BM, Prandi D, Tagawa ST, Molina AM, Nanus DM, Sternberg C, et al. Clonal evolution of chemotherapy-resistant urothelial carcinoma. Nat Genet. 2016;48:1490–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376:2109–21.

    CAS  PubMed  Google Scholar 

  50. 50.

    Treiber T, Treiber N, Plessmann U, Harlander S, Daiss JL, Eichner N, et al. A compendium of RNA-binding proteins that regulate microRNA biogenesis. Mol Cell. 2017;66:270–84. e213.

    CAS  PubMed  Google Scholar 

  51. 51.

    Nik-Zainal S, Wedge DC, Alexandrov LB, Petljak M, Butler AP, Bolli N, et al. Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer. Nat Genet. 2014;46:487–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Zaky A, Busso C, Izumi T, Chattopadhyay R, Bassiouny A, Mitra S, et al. Regulation of the human AP-endonuclease (APE1/Ref-1) expression by the tumor suppressor p53 in response to DNA damage. Nucleic Acids Res. 2008;36:1555–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Serebrenik AA, Argyris PP, Jarvis MC, Brown WL, Bazzaro M, Vogel RI, et al. The DNA cytosine deaminase APOBEC3B is a molecular determinant of platinum responsiveness in clear cell ovarian cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2020;26:3397–407.

    CAS  Google Scholar 

  54. 54.

    Leonard B, Starrett GJ, Maurer MJ, Oberg AL, Van Bockstal M, Van, et al. APOBEC3G expression correlates with T-cell infiltration and improved clinical outcomes in high-grade serous ovarian carcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2016;22:4746–55.

    CAS  Google Scholar 

  55. 55.

    Sur S, Pagliarini R, Bunz F, Rago C, Diaz LA Jr., Kinzler KW, et al. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci USA. 2009;106:3964–9.

    CAS  PubMed  Google Scholar 

  56. 56.

    Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 2013;12:393–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr B Vogelstein for p53-null HCT116 cells. We are grateful to Dr S Langdon for the PEA1 and PEA2 lines. Our thanks also go to Drs. S Hong and L Magnani for their kind gift of PEOO3 cells. This study was supported by Cancer Research UK grant C37/A18784. We thank the LMS/NIHR Imperial Biomedical Research Centre Flow Cytometry Facility for support. Additional support was provided by the Imperial Experimental Cancer Medicine Centre, Imperial NIHR Biomedical Research Centre, and the Cancer Research UK Imperial Centre. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simak Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Periyasamy, M., Singh, A.K., Gemma, C. et al. Induction of APOBEC3B expression by chemotherapy drugs is mediated by DNA-PK-directed activation of NF-κB. Oncogene 40, 1077–1090 (2021). https://doi.org/10.1038/s41388-020-01583-7

Download citation

Search

Quick links