Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FRMD6 has tumor suppressor functions in prostate cancer

Abstract

Available tools for prostate cancer (PC) prognosis are suboptimal but may be improved by better knowledge about genes driving tumor aggressiveness. Here, we identified FRMD6 (FERM domain-containing protein 6) as an aberrantly hypermethylated and significantly downregulated gene in PC. Low FRMD6 expression was associated with postoperative biochemical recurrence in two large PC patient cohorts. In overexpression and CRISPR/Cas9 knockout experiments in PC cell lines, FRMD6 inhibited viability, proliferation, cell cycle progression, colony formation, 3D spheroid growth, and tumor xenograft growth in mice. Transcriptomic, proteomic, and phospho-proteomic profiling revealed enrichment of Hippo/YAP and c-MYC signaling upon FRMD6 knockout. Connectivity Map analysis and drug repurposing experiments identified pyroxamide as a new potential therapy for FRMD6 deficient PC cells. Finally, we established orthotropic Frmd6 and Pten, or Pten only (control) knockout in the ROSA26 mouse prostate. After 12 weeks, Frmd6/Pten double knockouts presented high-grade prostatic intraepithelial neoplasia (HG-PIN) and hyperproliferation, while Pten single-knockouts developed only regular PIN lesions and displayed lower proliferation. In conclusion, FRMD6 was identified as a novel tumor suppressor gene and prognostic biomarker candidate in PC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FRMD6 in clinical samples.
Fig. 2: Functional studies in isogenic PC3, PC-3M, DU145, and DU145-MN1 cell lines.
Fig. 3: FRMD6 inhibits 3D spheroid and xenograft tumor growth.
Fig. 4: Pathway analysis of PC3_KO_FRMD6 vs. parental PC3 based on RNA-Seq data.
Fig. 5: Drug repurposing experiments and phospho-proteomics.
Fig. 6: Orthotropic gene editing in transgenic Rosa26-LSL-Cas9-eGFP mice.

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    PubMed  Google Scholar 

  2. Steineck G, Helgesen F, Adolfsson J, Dickman PW, Johansson JE, Norlen BJ, et al. Quality of life after radical prostatectomy or watchful waiting. N. Engl J Med. 2002;347:790–6.

    PubMed  Google Scholar 

  3. Gunn-Moore FJ, Tilston-Lunel AM, Reynolds PA. Willing to be involved in cancer. Genes. 2016;7:37. https://doi.org/10.3390/genes7070037.

  4. Gunn-Moore FJ, Welsh GI, Herron LR, Brannigan F, Venkateswarlu K, Gillespie S, et al. A novel 4.1 ezrin radixin moesin (FERM)-containing protein, ‘Willin’. FEBS Lett. 2005;579:5089–94.

    CAS  PubMed  Google Scholar 

  5. Ishiuchi T, Takeichi M. Nectins localize Willin to cell-cell junctions. Genes Cells. 2012;17:387–97.

    CAS  PubMed  Google Scholar 

  6. Ishiuchi T, Takeichi M. Willin and Par3 cooperatively regulate epithelial apical constriction through aPKC-mediated ROCK phosphorylation. Nat Cell Biol. 2011;13:860–6.

    CAS  PubMed  Google Scholar 

  7. Angus L, Moleirinho S, Herron L, Sinha A, Zhang X, Niestrata M, et al. Willin/FRMD6 expression activates the Hippo signaling pathway kinases in mammals and antagonizes oncogenic YAP. Oncogene. 2012;31:238–50.

    CAS  PubMed  Google Scholar 

  8. Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    CAS  PubMed  Google Scholar 

  9. Wang J, Hong Y, Shao S, Zhang K, Hong W. FFAR1-and FFAR4-dependent activation of Hippo pathway mediates DHA-induced apoptosis of androgen-independent prostate cancer cells. Biochem Biophys Res Commun. 2018;506:590–6.

    CAS  PubMed  Google Scholar 

  10. Zhou PJ, Xue W, Peng J, Wang Y, Wei L, Yang Z, et al. Elevated expression of Par3 promotes prostate cancer metastasis by forming a Par3/aPKC/KIBRA complex and inactivating the hippo pathway. J Exp Clin Cancer Res. 2017;36:139.

    PubMed  PubMed Central  Google Scholar 

  11. The Cancer Genome Atlas. https://www.cancer.gov/tcga.

  12. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Long Q, Xu J, Osunkoya AO, Sannigrahi S, Johnson BA, Zhou W, et al. Global transcriptome analysis of formalin-fixed prostate cancer specimens identifies biomarkers of disease recurrence. Cancer Res. 2014;74:3228–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Haldrup C, Lynnerup AS, Storebjerg TM, Vang S, Wild P, Visakorpi T, et al. Large-scale evaluation of SLC18A2 in prostate cancer reveals diagnostic and prognostic biomarker potential at three molecular levels. Mol Oncol. 2016;10:825–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Haldrup C, Pedersen AL, Ogaard N, Strand SH, Hoyer S, Borre M et al. Biomarker potential of ST6GALNAC3 and ZNF660 promoter hypermethylation in prostate cancer tissue and liquid biopsies. Mol Oncol. 2018;12:545–60.

  17. Strand SH, Switnicki M, Moller M, Haldrup C, Storebjerg TM, Hedegaard J, et al. RHCG and TCAF1 promoter hypermethylation predicts biochemical recurrence in prostate cancer patients treated by radical prostatectomy. Oncotarget. 2017;8:5774–88.

    PubMed  Google Scholar 

  18. Zhu Y, Qiu P, Ji Y. TCGA-assembler: open-source software for retrieving and processing TCGA data. Nat methods. 2014;11:599–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu Y, Xu Y, Helseth DL, Jr. Gulukota K, Yang S, Pesce LL et al. Zodiac: a comprehensive depiction of genetic interactions in cancer by integrating TCGA data. J Natl Cancer Inst. 2015;107:djv129. https://doi.org/10.1093/jnci/djv129.

  20. Hieronymus H, Schultz N, Gopalan A, Carver BS, Chang MT, Xiao Y, et al. Copy number alteration burden predicts prostate cancer relapse. Proc Natl Acad Sci USA. 2014;111:11139–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Correction for Pourdehnad et al. Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proceedings of the National Academy of Sciences. 2013;110:17160.

  22. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017;171:1437–52.e1417.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Moya IM, Halder G. Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol. 2019;20:211–26.

    CAS  PubMed  Google Scholar 

  24. Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol. 2015;17:1218–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Riedel M, Berthelsen MF, Bakiri L, Wagner EF, Thomsen MK. Virus delivery of CRISPR guides to the murine prostate for gene alteration. J Vis Exp. 2018;57525. https://doi.org/10.3791/57525.

  26. Dart DA, Uysal-Onganer P, Jiang WG. Prostate-specific PTen deletion in mice activates inflammatory microRNA expression pathways in the epithelium early in hyperplasia development. Oncogenesis. 2017;6:400.

    PubMed  PubMed Central  Google Scholar 

  27. Xu Y, Wang K, Yu Q. FRMD6 inhibits human glioblastoma growth and progression by negatively regulating activity of receptor tyrosine kinases. Oncotarget. 2016;7:70080–91.

  28. Guan C, Chang Z, Gu X, Liu R. MTA2 promotes HCC progression through repressing FRMD6, a key upstream component of hippo signaling pathway. Biochem Biophys Res Commun. 2019;515:112–8.

    CAS  PubMed  Google Scholar 

  29. Visser-Grieve S, Hao Y, Yang X. Human homolog of Drosophila expanded, hEx, functions as a putative tumor suppressor in human cancer cell lines independently of the Hippo pathway. Oncogene. 2012;31:1189–95.

    CAS  PubMed  Google Scholar 

  30. Bocci F, Tripathi SC, Vilchez Mercedes SA, George JT, Casabar JP, Wong PK, et al. NRF2 activates a partial epithelial-mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. Integr Biol. 2019;11:251–63.

    Google Scholar 

  31. Jolly MK, Tripathi SC, Jia D, Mooney SM, Celiktas M, Hanash SM, et al. Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget. 2016;7:27067–84.

    PubMed  PubMed Central  Google Scholar 

  32. Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, et al. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharm Ther. 2019;194:161–84.

    CAS  Google Scholar 

  33. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29:783–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Stauffer S, Chen X, Zhang L, Chen Y, Dong J. KIBRA promotes prostate cancer cell proliferation and motility. Febs J. 2016;283:1800–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nishimoto M, Uranishi K, Asaka MN, Suzuki A, Mizuno Y, Hirasaki M, et al. Transformation of normal cells by aberrant activation of YAP via cMyc with TEAD. Sci Rep. 2019;9:10933.

    PubMed  PubMed Central  Google Scholar 

  36. Poole CJ, van Riggelen J. MYC-master regulator of the cancer epigenome and transcriptome. Genes. 2017;8:142. https://doi.org/10.3390/genes8050142.

  37. Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007;26:5541–52.

    CAS  PubMed  Google Scholar 

  38. Nebbioso A, Carafa V, Conte M, Tambaro FP, Abbondanza C, Martens J, et al. c-Myc modulation and acetylation is a key HDAC inhibitor target in cancer. Clin Cancer Res. 2017;23:2542–55.

    CAS  PubMed  Google Scholar 

  39. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159:440–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, et al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol. 2018;15:222–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4:209–21.

    CAS  PubMed  Google Scholar 

  42. Brawer MK. Prostatic intraepithelial neoplasia: an overview. Rev Urol. 2005;7:S11–18.

    PubMed  PubMed Central  Google Scholar 

  43. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.

    PubMed  PubMed Central  Google Scholar 

  45. Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    CAS  PubMed  Google Scholar 

  46. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hedegaard J, Thorsen K, Lund MK, Hein AM, Hamilton-Dutoit SJ, Vang S, et al. Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS ONE. 2014;9:e98187.

    PubMed  PubMed Central  Google Scholar 

  48. Feber A, Guilhamon P, Lechner M, Fenton T, Wilson GA, Thirlwell C, et al. Using high-density DNA methylation arrays to profile copy number alterations. Genome Biol. 2014;15:R30.

    PubMed  PubMed Central  Google Scholar 

  49. Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, et al. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics. 2014;30:428–30.

    CAS  PubMed  Google Scholar 

  50. The R-project for statistical computing, 2014, https://www.r-project.org.

  51. Schmidt L, Moller M, Haldrup C, Strand SH, Vang S, Hedegaard J et al. Exploring the transcriptome of hormone-naive multifocal prostate cancer and matched lymph node metastases. Br J Cancer. 2018;119:1527–37.

  52. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    CAS  PubMed  Google Scholar 

  53. Harrell FE Jr., Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA. 1982;247:2543–6.

    PubMed  Google Scholar 

  54. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.

    Google Scholar 

Download references

Acknowledgements

Prof. Raymond C. Bergan (Department of Medicine, Northwestern University, Chicago, USA) generously provided the PC-3M cell line. The DU145-MN1 cell line was kindly provided by Dr Volker Jung (Institute of Urology and Pediatric Urology, University of Saarland, Hamburg/Saar, Germany). We thank Dr Søren Vang, Dr Morten Muhlig, and Dr Michael Knudsen for bioinformatics support. The Danish Cancer Biobank (DCB) is acknowledged for biological material. Ros Eeles and Zsofia Kote-Karai are supported by NIHR support to the Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden NHS Foundation Trust. Clara Cieza-Borella was supported by a donation from the Burstons and by research donations from the de Laszlo Foundation. This work was supported by The Danish Cancer Society (KDS), The Velux Foundation (KDS), The Novo Nordisk Foundation [NNF16OC0023048 (KDS); NNF16OC0022946 (MEJ); NNF14CC0001 (JVO)], The Independent Research Fund Denmark, The Harboe Foundation (JHJ), The Lundbeck Foundation [R231-2016-2682 (MEJ)], National Institute of Health Research (RE), The Biomedical Research Centre at the Institute of Cancer Research and Royal Marsden NHS Foundation Trust (RE), Richard and Debbi Burston, Nick Phillips and Bradshaw Foundation (CCB), and Aarhus University (JHJ/SHS).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: JHJ, SHS, and KDS. Development of methodology: JHJ, SHS, CCB, MT, and JVO. Acquisition of data JHJ, SHS, MR, SH, MN, MT, FDH, MB, and MEJ. Analysis and interpretation of data: JHJ, SHS, MEJ, MT, CCB, BU, and KDS. Writing of the manuscript: JHJ, SHS, and KDS. Revision and approval of the final manuscript: All authors. Study supervision: KDS, ZKJ, RE, and JVO.

Corresponding author

Correspondence to Karina D. Sorensen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haldrup, J., Strand, S.H., Cieza-Borrella, C. et al. FRMD6 has tumor suppressor functions in prostate cancer. Oncogene 40, 763–776 (2021). https://doi.org/10.1038/s41388-020-01548-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01548-w

This article is cited by

Search

Quick links