Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel targeted mtLivin nanoparticles treatment for disseminated diffuse large B-cell lymphoma

Abstract

We previously showed that Livin, an inhibitor of apoptosis protein, is specifically cleaved to produce a truncated protein, tLivin, and demonstrated its paradoxical proapoptotic activity. We further demonstrated that mini-tLivin (MTV), a 70 amino acids derivative of tLivin, is a proapoptotic protein as potent as tLivin. Based on these findings, in this study we aimed to develop a venue to target MTV for the treatment of diffuse large B-cell lymphoma (DLBCL). MTV was conjugated to poly (lactide-co-glycolic acid) surface-activated nanoparticles (NPs). In order to target MTV-NPs we also conjugated CD40 ligand (CD40L) to the surface of the NPs and evaluated the efficacy of the bifunctional CD40L-MTV-NPs. In vitro, CD40L-MTV-NPs elicited significant apoptosis of DLBCL cells. In a disseminated mouse model of DLBCL, 37.5% of MTV-NPs treated mice survived at the end of the experiment. Targeting MTV-NPs using CD40L greatly improved survival and 71.4% of these mice survived. CD40L-MTV-NPs also greatly reduced CNS involvement of DLBCL. Only 20% of these mice presented infiltration of lymphoma to the brain in comparison to 77% of the MTV-NPs treated mice. In a subcutaneous mouse model, CD40L-MTV-NPs significantly reduced tumor volume in correlation with significant increased caspase-3 activity. Thus, targeted MTV-NPs suggest a novel approach to overcome apoptosis resistance in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MTV-NPs induce apoptosis of OCI-LY19 DLBCL cells in vitro.
Fig. 2: Targeted CD40L-MTV-NPs induce apoptosis of OCI-LY19 DLBCL cells in vitro.
Fig. 3: In a xenograft mouse model, human OCI-LY19-GLuc DLBCL cells disseminate mainly to the brain and bone marrow.
Fig. 4: MTV-NPs with and without CD40L inhibit tumor growth in the in vivo disseminated DLBCL mouse model.
Fig. 5: CD40L-MTV-NPs inhibit dissemination of OCI-LY19-GLuc tumor cells to the BM and brain.
Fig. 6: CD40L-MTV-NPs induce apoptotic tumor cell death and improve survival of mice with DLBCL subcutaneous tumors.

Similar content being viewed by others

References

  1. Foo J, Michor F. Evolution of acquired resistance to anti-cancer therapy. J Theor Biol. 2014;355:10–20.

    PubMed  Google Scholar 

  2. Girotti MR, Marais R. Deja Vu: EGF receptors drive resistance to BRAF inhibitors. Cancer Discov. 2013;3:487–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nachmias B, Ashhab Y, Ben-Yehuda D. The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Semin Cancer Biol. 2004;14:231–43.

    CAS  PubMed  Google Scholar 

  4. Sanna MG, da Silva Correia J, Ducrey O, Lee J, Nomoto K, Schrantz N, et al. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol Cell Biol. 2002;22:1754–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nachmias B, Ashhab Y, Bucholtz V, Drize O, Kadouri L, Lotem M, et al. Caspase-mediated cleavage converts Livin from an antiapoptotic to a proapoptotic factor: implications for drug-resistant melanoma. Cancer Res. 2003;63:6340–9.

    CAS  PubMed  Google Scholar 

  6. Shiloach T, Berens C, Danke C, Waiskopf O, Perlman R, Ben-Yehuda D. tLivin displays flexibility by promoting alternative cell death mechanisms. PLoS ONE. 2014;9:e101075.

    PubMed  PubMed Central  Google Scholar 

  7. Abd-Elrahman I, Hershko K, Neuman T, Nachmias B, Perlman R, Ben-Yehuda D. The inhibitor of apoptosis protein Livin (ML-IAP) plays a dual role in tumorigenicity. Cancer Res. 2009;69:5475–80.

    CAS  PubMed  Google Scholar 

  8. Lazar I, Perlman R, Lotem M, Peretz T, Ben-Yehuda D, Kadouri L. The clinical effect of the inhibitor of apopotosis protein livin in melanoma. Oncology. 2012;82:197–204.

    CAS  PubMed  Google Scholar 

  9. Choi J, Hwang YK, Sung KW, Lee SH, Yoo KH, Jung HL. et al. Expression of Livin, an antiapoptotic protein, is an independent favorable prognostic factor in childhood acute lymphoblastic leukemia. Blood. 2007;109:471–7.

    CAS  PubMed  Google Scholar 

  10. Nachmias B, Lazar I, Elmalech M, Abed-El-Rahaman I, Asshab Y, Mandelboim O, et al. Subcellular localization determines the delicate balance between the anti- and pro-apoptotic activity of Livin. Apoptosis. 2007.

  11. Lu Y, Chen SC. Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Deliv Rev. 2004;56:1621–33.

    CAS  PubMed  Google Scholar 

  12. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63:136–51.

    CAS  PubMed  Google Scholar 

  13. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41:189–207.

    CAS  PubMed  Google Scholar 

  14. Nagamitsu A, Greish K, Maeda H. Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors. Jap J Clin Oncol. 2009;39:756–66.

    Google Scholar 

  15. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014.

    CAS  Google Scholar 

  16. Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomed. 2018;13:3921–35.

    CAS  Google Scholar 

  17. Harush-Frenkel O, Bivas-Benita M, Nassar T, Springer C, Sherman Y, Avital A, et al. A safety and tolerability study of differently-charged nanoparticles for local pulmonary drug delivery. Toxicol Appl Pharmacol. 2010;246:83–90.

    CAS  PubMed  Google Scholar 

  18. Karra N, Nassar T, Ripin AN, Schwob O, Borlak J, Benita S. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model. Small. 2013;9:4221–36.

    CAS  PubMed  Google Scholar 

  19. Bartok E, Bauernfeind F, Khaminets MG, Jakobs C, Monks B, Fitzgerald KA, et al. iGLuc: a luciferase-based inflammasome and protease activity reporter. Nat Methods. 2013;10:147–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Niers JM, Kerami M, Pike L, Lewandrowski G, Tannous BA. Multimodal in vivo imaging and blood monitoring of intrinsic and extrinsic apoptosis. Mol Ther. 2011;19:1090–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chung E, Yamashita H, Au P, Tannous BA, Fukumura D, Jain RK. Secreted Gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases. PLoS ONE. 2009;4:e8316.

    PubMed  PubMed Central  Google Scholar 

  22. Inoue Y, Sheng F, Kiryu S, Watanabe M, Ratanakanit H, Izawa K, et al. Gaussia luciferase for bioluminescence tumor monitoring in comparison with firefly luciferase. Mol Imaging. 2011;10:377–85.

    CAS  PubMed  Google Scholar 

  23. Bovenberg MS, Degeling MH, Tannous BA. Enhanced Gaussia luciferase blood assay for monitoring of in vivo biological processes. Anal Chem. 2012;84:1189–92.

    CAS  PubMed  Google Scholar 

  24. Banchereau J, Bazan F, Blanchard D, Briere F, Galizzi JP, van Kooten C, et al. The CD40 antigen and its ligand. Annu Rev Immunol. 1994;12:881–922.

    CAS  PubMed  Google Scholar 

  25. van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol. 2000;67:2–17.

    PubMed  Google Scholar 

  26. Uckun FM, Gajl-Peczalska K, Myers DE, Jaszcz W, Haissig S, Ledbetter JA. Temporal association of CD40 antigen expression with discrete stages of human B-cell ontogeny and the efficacy of anti-CD40 immunotoxins against clonogenic B-lineage acute lymphoblastic leukemia as well as B-lineage non-Hodgkin’s lymphoma cells. Blood. 1990;76:2449–56.

    CAS  PubMed  Google Scholar 

  27. Hostager BS, Bishop GA. CD40-mediated activation of the NF-kappaB2 pathway. Front Immunol. 2013;4:376.

    PubMed  PubMed Central  Google Scholar 

  28. Carreno BM, Garbow JR, Kolar GR, Jackson EN, Engelbach JA, Becker-Hapak M, et al. Immunodeficient mouse strains display marked variability in growth of human melanoma lung metastases. Clin Cancer Res. 2009;15:3277–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kojima C, Nishisaka E, Suehiro T, Watanabe K, Harada A, Goto T, et al. The synthesis and evaluation of polymer prodrug/collagen hybrid gels for delivery into metastatic cancer cells. Nanomedicine. 2013;9:767–75.

    CAS  PubMed  Google Scholar 

  30. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16:3267–85.

    CAS  PubMed  Google Scholar 

  31. Jin Y, Liu S, Yu B, Golan S, Koh CG, Yang J, et al. Targeted delivery of antisense oligodeoxynucleotide by transferrin conjugated pH-sensitive lipopolyplex nanoparticles: a novel oligonucleotide-based therapeutic strategy in acute myeloid leukemia. Mol Pharm. 2010;7:196–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen WC, Completo GC, Sigal DS, Crocker PR, Saven A, Paulson JC. In vivo targeting of B-cell lymphoma with glycan ligands of CD22. Blood. 2010;115:4778–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang S, Zhang X, Yu B, Lee RJ, Lee LJ. Targeted nanoparticles enhanced flow electroporation of antisense oligonucleotides in leukemia cells. Biosens Bioelectron. 2010;26:778–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bicho A, Peca IN, Roque AC, Cardoso MM. Anti-CD8 conjugated nanoparticles to target mammalian cells expressing CD8. Int J Pharm. 2010;399:80–6.

    CAS  PubMed  Google Scholar 

  35. Phongpradist R, Chittasupho C, Okonogi S, Siahaan T, Anuchapreeda S, Ampasavate C, et al. LFA-1 on leukemic cells as a target for therapy or drug delivery. Curr Pharm Des. 2010;16:2321–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490:116–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stiff PJ, Unger JM, Cook JR, Constine LS, Couban S, Stewart DA, et al. Autologous transplantation as consolidation for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 2013;369:1681–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chavez JC, Bachmeier C, Kharfan-Dabaja MA. CAR T-cell therapy for B-cell lymphomas: clinical trial results of available products. Ther Adv Hematol. 2019;10:2040620719841581.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dong X, Mattingly CA, Tseng MT, Cho MJ, Liu Y, Adams VR, et al. Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res. 2009;69:3918–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liang XJ, Chen C, Zhao Y, Wang PC. Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol Biol. 2010;596:467–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Milane L, Duan Z, Amiji M. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol Pharm. 2011;8:185–203.

    CAS  PubMed  Google Scholar 

  42. Goldstein D, Sader O, Benita S. Influence of oil droplet surface charge on the performance of antibody-emulsion conjugates. Biomed Pharmacother. 2007;61:97–103.

    CAS  PubMed  Google Scholar 

  43. Schultze J, Johnson P. A stimulating new target for cancer immunotherapy. Lancet. 1999;354:1225–7.

    CAS  PubMed  Google Scholar 

  44. Young LS, Eliopoulos AG, Gallagher NJ, Dawson CW. CD40 and epithelial cells: across the great divide. Immunol Today. 1998;19:502–6.

    CAS  PubMed  Google Scholar 

  45. Spriggs MK, Armitage RJ, Strockbine L, Clifford KN, Macduff BM, Sato TA, et al. Recombinant human CD40 ligand stimulates B cell proliferation and immunoglobulin E secretion. J Exp Med. 1992;176:1543–50.

    CAS  PubMed  Google Scholar 

  46. Armitage RJ, Fanslow WC, Strockbine L, Sato TA, Clifford KN, Macduff BM, et al. Molecular and biological characterization of a murine ligand for CD40. Nature. 1992;357:80–2.

    CAS  PubMed  Google Scholar 

  47. Szocinski JL, Khaled AR, Hixon J, Halverson D, Funakoshi S, Fanslow WC, et al. Activation-induced cell death of aggressive histology lymphomas by CD40 stimulation: induction of bax. Blood. 2002;100:217–23.

    CAS  PubMed  Google Scholar 

  48. Funakoshi S, Longo DL, Beckwith M, Conley DK, Tsarfaty G, Tsarfaty I, et al. Inhibition of human B-cell lymphoma growth by CD40 stimulation. Blood. 1994;83:2787–94.

    CAS  PubMed  Google Scholar 

  49. Wennhold K, Weber TM, Klein-Gonzalez N, Thelen M, Garcia-Marquez M, Chakupurakal G, et al. CD40-activated B cells induce anti-tumor immunity in vivo. Oncotarget. 2017;8:27740–53.

    PubMed  Google Scholar 

  50. Schultze JL, Cardoso AA, Freeman GJ, Seamon MJ, Daley J, Pinkus GS, et al. Follicular lymphomas can be induced to present alloantigen efficiently: a conceptual model to improve their tumor immunogenicity. Proc Natl Acad Sci USA. 1995;92:8200–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Georgopoulos NT, Merrick A, Scott N, Selby PJ, Melcher A, Trejdosiewicz LK. CD40-mediated death and cytokine secretion in colorectal cancer: a potential target for inflammatory tumour cell killing. Int J Cancer. 2007;121:1373–81.

    CAS  PubMed  Google Scholar 

  52. Georgopoulos NT, Steele LP, Thomson MJ, Selby PJ, Southgate J, Trejdosiewicz LK. A novel mechanism of CD40-induced apoptosis of carcinoma cells involving TRAF3 and JNK/AP-1 activation. Cell Death Differ. 2006;13:1789–801.

    CAS  PubMed  Google Scholar 

  53. Bugajska U, Georgopoulos NT, Southgate J, Johnson PW, Graber P, Gordon J, et al. The effects of malignant transformation on susceptibility of human urothelial cells to CD40-mediated apoptosis. J Natl Cancer Inst. 2002;94:1381–95.

    CAS  PubMed  Google Scholar 

  54. Calimeri T, Lopedote P, Ferreri AJM. Risk stratification and management algorithms for patients with diffuse large B-cell lymphoma and CNS involvement. Ann Lymphoma. 2019;3:7.

    Google Scholar 

  55. Ghose A, Elias HK, Guha G, Yellu M, Kundu R, Latif T. Influence of rituximab on central nervous system relapse in diffuse large B-Cell lymphoma and role of prophylaxis-A systematic review of prospective studies. Clin Lymphoma Myeloma Leuk. 2015;15:451–7.

    PubMed  Google Scholar 

  56. Bierman P, Giglio P. Diagnosis and treatment of central nervous system involvement in non-Hodgkin’s lymphoma. Hematol Oncol Clin North Am. 2005;19:597–609, v.

    PubMed  Google Scholar 

  57. Rubenstein JL, Combs D, Rosenberg J, Levy A, McDermott M, Damon L, et al. Rituximab therapy for CNS lymphomas: targeting the leptomeningeal compartment. Blood. 2003;101:466–8.

    CAS  PubMed  Google Scholar 

  58. Huang L, Huang J, Huang J, Xue H, Liang Z, Wu J, et al. Nanomedicine—a promising therapy for hematological malignancies. Biomater Sci. 2020;8:2376–93.

    CAS  PubMed  Google Scholar 

  59. Jia J, Xiong ZA, Qin Q, Yao CG, Zhao XZ. Picosecond pulsed electric fields induce apoptosis in a cervical cancer xenograft. Mol Med Rep. 2015;11:1623–8.

    CAS  PubMed  Google Scholar 

  60. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55:R1–R4.

    CAS  Google Scholar 

  61. Shi JQ, Lasky K, Shinde V, Stringer B, Qian MG, Liao D, et al. MLN0905, a small-molecule plk1 inhibitor, induces antitumor responses in human models of diffuse large B-cell lymphoma. Mol Cancer Ther. 2012;11:2045–53.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Galina Skarzinski for immunohistochemistry. This work was supported by Kamin Incentive Program, Israel Innovation Authority (DBY and SB), Dorot foundation (DBY), Eleanor Fox (DBY), and Aleen and David M. Epstein Fund for Hematology/oncology research (DBY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Ben Yehuda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elrahman, I., Nassar, T., Khairi, N. et al. Novel targeted mtLivin nanoparticles treatment for disseminated diffuse large B-cell lymphoma. Oncogene 40, 334–344 (2021). https://doi.org/10.1038/s41388-020-01529-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01529-z

This article is cited by

Search

Quick links