Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The pro-oncogenic effect of the lncRNA H19 in the development of chronic inflammation-mediated hepatocellular carcinoma

Abstract

The oncofetal long noncoding RNA (lncRNA) H19 is postnatally repressed in most tissues, and re-expressed in many cancers, including hepatocellular carcinoma (HCC). The role of H19 in carcinogenesis is a subject of controversy. We aimed to examine the role of H19 in chronic inflammation-mediated hepatocarcinogenesis using the Mdr2/Abcb4 knockout (Mdr2-KO) mouse, a well-established HCC model. For this goal, we have generated Mdr2-KO/H19-KO double knockout (dKO) mice and followed spontaneous tumor development in the dKO and control Mdr2-KO mice. Cellular localization of H19 and effects of H19 loss in the liver were determined in young and old Mdr2-KO mice. Tumor incidence and tumor load were both significantly decreased in the liver of dKO versus Mdr2-KO females. The expression levels of H19 and Igf2 were variable in nontumor liver tissues of Mdr2-KO females and were significantly downregulated in most matched tumors. In nontumor liver tissue of aged Mdr2-KO females, H19 was expressed mainly in hepatocytes, and hepatocyte proliferation was increased compared to dKO females. At an early age, dKO females displayed lower levels of liver injury and B-cell infiltration, with higher percentage of binuclear hepatocytes. In human samples, H19 expression was higher in females, positively correlated with cirrhosis (in nontumor liver samples) and negatively correlated with CTNNB1 (beta-catenin) mutations and patients’ survival (in tumors). Our data demonstrate that the lncRNA H19 is pro-oncogenic during the development of chronic inflammation-mediated HCC in the Mdr2-KO mouse model, mainly by increasing liver injury and decreasing hepatocyte polyploidy in young mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: H19 loss impeded hepatocarcinogenesis in Mdr2-KO females.
Fig. 2: In the liver of old Mdr2-KO females, H19 is expressed mainly in hepatocytes.
Fig. 3: H19 loss reduces liver injury and B-cell infiltration into the liver of 3-month-old Mdr2-KO females.
Fig. 4: H19 loss increases proportion of binuclear hepatocytes in the liver of 3-month-old Mdr2-KO females.
Fig. 5: Transcriptome profiling of livers from young and old dKO versus Mdr2-KO females using RNA sequencing and GSEA reveals decreased inflammation and liver injury in dKO mice.
Fig. 6: H19 expression in adjacent nontumor liver of HCC patients.
Fig. 7: H19 expression in human HCC tumors.
Fig. 8: In the Mdr2-KO model of chronic inflammation-mediated HCC, H19 has a pro-oncogenic role.

Similar content being viewed by others

References

  1. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2016;2:16018.

    Article  PubMed  Google Scholar 

  2. Raveh E, Matouk IJ, Gilon M, Hochberg A. The H19 long non-coding RNA in cancer initiation, progression and metastasis—a proposed unifying theory. Mol Cancer. 2015;14:184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yoshimizu T, Miroglio A, Ripoche MA, Gabory A, Vernucci M, Riccio A, et al. The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci USA. 2008;105:12417–22.

    Article  CAS  PubMed  Google Scholar 

  4. Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS ONE. 2007;2:e845.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mauad TH, van Nieuwkerk CM, Dingemans KP, Smit JJ, Schinkel AH, Notenboom RG, et al. Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am J Pathol. 1994;145:1237–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Katzenellenbogen M, Pappo O, Barash H, Klopstock N, Mizrahi L, Olam D, et al. Multiple adaptive mechanisms to chronic liver disease revealed at early stages of liver carcinogenesis in the Mdr2-knockout mice. Cancer Res. 2006;66:4001–10.

    Article  CAS  PubMed  Google Scholar 

  7. Katzenellenbogen M, Mizrahi L, Pappo O, Klopstock N, Olam D, Jacob-Hirsch J, et al. Molecular mechanisms of liver carcinogenesis in the Mdr2-knockout mice. Mol Cancer Res. 2007;5:1159–70.

    Article  CAS  PubMed  Google Scholar 

  8. Potikha T, Stoyanov E, Pappo O, Frolov A, Mizrahi L, Olam D, et al. Interstrain differences in chronic hepatitis and tumor development in a murine model of inflammation-mediated hepatocarcinogenesis. Hepatology. 2013;58:192–204.

    Article  CAS  PubMed  Google Scholar 

  9. Ella E, Heim D, Stoyanov E, Harari-Steinfeld R, Steinfeld I, Pappo O, et al. Specific genomic and transcriptomic aberrations in tumors induced by partial hepatectomy of a chronically inflamed murine liver. Oncotarget. 2014;5:10318–31.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Martinez-Quetglas I, Pinyol R, Dauch D, Torrecilla S, Tovar V, Moeini A, et al. IGF2 Is up-regulated by epigenetic mechanisms in hepatocellular carcinomas and is an actionable oncogene product in experimental models. Gastroenterology. 2016;151:1192–205.

    Article  CAS  PubMed  Google Scholar 

  11. Yamamoto Y, Nishikawa Y, Tokairin T, Omori Y, Enomoto K. Increased expression of H19 non-coding mRNA follows hepatocyte proliferation in the rat and mouse. J Hepatol. 2004;40:808–14.

    Article  CAS  PubMed  Google Scholar 

  12. Pope C, Piekos SC, Chen L, Mishra S, Zhong XB. The role of H19, a long non-coding RNA, in mouse liver postnatal maturation. PLoS ONE. 2017;12:e0187557.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Shoshani O, Massalha H, Shani N, Kagan S, Ravid O, Madar S, et al. Polyploidization of murine mesenchymal cells is associated with suppression of the long noncoding RNA H19 and reduced tumorigenicity. Cancer Res. 2012;72:6403–13.

    Article  CAS  PubMed  Google Scholar 

  14. Guidotti JE, Bregerie O, Robert A, Debey P, Brechot C, Desdouets C. Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem. 2003;278:19095–101.

    Article  CAS  PubMed  Google Scholar 

  15. Boyault S, Rickman DS, de Reynies A, Balabaud C, Rebouissou S, Jeannot E, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45:42–52.

    Article  CAS  PubMed  Google Scholar 

  16. Lecerf C, Le Bourhis X, Adriaenssens E. The long non-coding RNA H19: an active player with multiple facets to sustain the hallmarks of cancer. Cell Mol Life Sci. 2019;76:4673–87.

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Liu R, Yang J, Sun L, Zhang L, Jiang Z, et al. The role of long noncoding RNA H19 in gender disparity of cholestatic liver injury in multidrug resistance 2 gene knockout mice. Hepatology. 2017;66:869–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adriaenssens E, Lottin S, Dugimont T, Fauquette W, Coll J, Dupouy JP, et al. Steroid hormones modulate H19 gene expression in both mammary gland and uterus. Oncogene. 1999;18:4460–73.

    Article  CAS  PubMed  Google Scholar 

  19. Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, et al. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J. 2012;279:3159–65.

    Article  CAS  PubMed  Google Scholar 

  20. Schultheiss CS, Laggai S, Czepukojc B, Hussein UK, List M, Barghash A, et al. The long non-coding RNA H19 suppresses carcinogenesis and chemoresistance in hepatocellular carcinoma. Cell Stress. 2017;1:37–54.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jiang Y, Huang Y, Cai S, Song Y, Boyer JL, Zhang K, et al. H19 is expressed in hybrid hepatocyte nuclear factor 4alpha(+) periportal hepatocytes but not cytokeratin 19(+) cholangiocytes in cholestatic livers. Hepatol Commun. 2018;2:1356–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chen X, Yamamoto M, Fujii K, Nagahama Y, Ooshio T, Xin B, et al. Differential reactivation of fetal/neonatal genes in mouse liver tumors induced in cirrhotic and non-cirrhotic conditions. Cancer Sci. 2015;106:972–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uehara T, Ainslie GR, Kutanzi K, Pogribny IP, Muskhelishvili L, Izawa T, et al. Molecular mechanisms of fibrosis-associated promotion of liver carcinogenesis. Toxicol Sci. 2013;132:53–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y, Liu C, Barbier O, Smalling R, Tsuchiya H, Lee S, et al. Bcl2 is a critical regulator of bile acid homeostasis by dictating Shp and lncRNA H19 function. Sci Rep. 2016;6:20559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Faggioli F, Palagano E, Di Tommaso L, Donadon M, Marrella V, Recordati C, et al. B lymphocytes limit senescence-driven fibrosis resolution and favor hepatocarcinogenesis in mouse liver injury. Hepatology. 2018;67:1970–85.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao R, Chen X, Ma W, Zhang J, Guo J, Zhong X, et al. A GPR174-CCL21 module imparts sexual dimorphism to humoral immunity. Nature. 2020;577:416–20.

    Article  CAS  PubMed  Google Scholar 

  27. Stoyanov E, Ludwig G, Mizrahi L, Olam D, Schnitzer-Perlman T, Tasika E, et al. Chronic liver inflammation modifies DNA methylation at the precancerous stage of murine hepatocarcinogenesis. Oncotarget. 2015;6:11047–60.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang S, Zhou K, Luo X, Li L, Tu HC, Sehgal A, et al. The polyploid state plays a tumor-suppressive role in the liver. Dev Cell. 2018;44:447–59.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilkinson PD, Delgado ER, Alencastro F, Leek MP, Roy N, Weirich MP, et al. The polyploid state restricts hepatocyte proliferation and liver regeneration in mice. Hepatology. 2019;69:1242–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee JW, Stone ML, Porrett PM, Thomas SK, Komar CA, Li JH, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature. 2019;567:249–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nemeth J, Stein I, Haag D, Riehl A, Longerich T, Horwitz E, et al. S100A8 and S100A9 are novel nuclear factor kappa B target genes during malignant progression of murine and human liver carcinogenesis. Hepatology. 2009;50:1251–62.

    Article  CAS  PubMed  Google Scholar 

  32. Robert O, Boujedidi H, Bigorgne A, Ferrere G, Voican CS, Vettorazzi S, et al. Decreased expression of the glucocorticoid receptor-GILZ pathway in Kupffer cells promotes liver inflammation in obese mice. J Hepatol. 2016;64:916–24.

    Article  CAS  PubMed  Google Scholar 

  33. Ricci E, Ronchetti S, Gabrielli E, Pericolini E, Gentili M, Roselletti E, et al. GILZ restrains neutrophil activation by inhibiting the MAPK pathway. J Leukoc Biol. 2019;105:187–94.

    Article  CAS  PubMed  Google Scholar 

  34. Jones SA, Toh AE, Odobasic D, Oudin MA, Cheng Q, Lee JP, et al. Glucocorticoid-induced leucine zipper (GILZ) inhibits B cell activation in systemic lupus erythematosus. Ann Rheum Dis. 2016;75:739–47.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu P, Wang Y, Du Y, He L, Huang G, Zhang G, et al. C8orf4 negatively regulates self-renewal of liver cancer stem cells via suppression of NOTCH2 signalling. Nat Commun. 2015;6:7122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goyal N, Tiwary S, Kesharwani D, Datta M. Long non-coding RNA H19 inhibition promotes hyperglycemia in mice by upregulating hepatic FoxO1 levels and promoting gluconeogenesis. J Mol Med. 2019;97:115–26.

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Liu R, Huang Z, Gurley EC, Wang X, Wang J, et al. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans. Hepatology. 2018;68:599–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang JB, Zhao ZB, Liu QZ, Hu TD, Long J, Yan K, et al. FoxO1 is a regulator of MHC-II expression and anti-tumor effect of tumor-associated macrophages. Oncogene. 2018;37:1192–204.

    Article  CAS  PubMed  Google Scholar 

  39. Yang XW, Shen GZ, Cao LQ, Jiang XF, Peng HP, Shen G, et al. MicroRNA-1269 promotes proliferation in human hepatocellular carcinoma via downregulation of FOXO1. BMC Cancer. 2014;14:909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yang N, Zhou J, Li Q, Han F, Yu Z. miR-96 exerts carcinogenic effect by activating AKT/GSK-3beta/beta-catenin signaling pathway through targeting inhibition of FOXO1 in hepatocellular carcinoma. Cancer Cell Int. 2019;19:38.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hao PP, Li H, Lee MJ, Wang YP, Kim JH, Yu GR, et al. Disruption of a regulatory loop between DUSP1 and p53 contributes to hepatocellular carcinoma development and progression. J Hepatol. 2015;62:1278–86.

    Article  CAS  PubMed  Google Scholar 

  42. Ying J, Srivastava G, Hsieh WS, Gao Z, Murray P, Liao SK, et al. The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res. 2005;11:6442–9.

    Article  CAS  PubMed  Google Scholar 

  43. Xu G, Zhang L, Ma A, Qian Y, Ding Q, Liu Y, et al. SIP1 is a downstream effector of GADD45G in senescence induction and growth inhibition of liver tumor cells. Oncotarget. 2015;6:33636–47.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hoppstadter J, Ammit AJ. Role of dual-specificity phosphatase 1 in glucocorticoid-driven anti-inflammatory responses. Front Immunol. 2019;10:1446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Chiang DY, Villanueva A, Hoshida Y, Peix J, Newell P, Minguez B, et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 2008;68:6779–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang J, Han C, Ungerleider N, Chen W, Song K, Wang Y, et al. A transforming growth factor-beta and H19 signaling axis in tumor-initiating hepatocytes that regulates hepatic carcinogenesis. Hepatology. 2019;69:1549–63.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang L, Yang F, Yuan JH, Yuan SX, Zhou WP, Huo XS, et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 2013;34:577–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Sharona Elgavish, Yuval Nevo, and Hadar Benyamini (Bioinformatics Unit of the I-CORE Computation Center at The Hebrew University and Hadassah, Jerusalem, Israel) for single-cell transcriptomic (SE & YN) and gene set enrichment (HB) analyses, Zakharia Manevich (The Core Research Facility at The Faculty of Medicine, Ein Kerem, The Hebrew University, Jerusalem, Israel) for advice with confocal microscopy, Luisa Dandolo (Institut Cochin, Paris, France) for providing the 129Sv H19Δ3 mutant mice, Shalev Itzkovitz (Weizmann Institute of Science, Rehovot, Israel) for useful discussions and help with smRNA-FISH, Ilan Stein and Yoganathan Krishnamoorthy (Department of Pathology, Hebrew University-Hadassah Medical School) for advice with immunohistochemistry, and Hilla Giladi (The Goldyne Savad Institute of Gene Therapy) for critical reading of the manuscript.

Funding

Robert H. Benson Living Trust and Selma Kron Foundation to student fellowships. DSG is supported by the Kamea Scientific Foundation of the Israeli Government. JHA was supported by ISF 923/14. SC was supported by a funding from Labex OncoImunology and CARPEM. The JZR group was supported by INSERM, Ligue Nationale contre le Cancer (Equipe Labellisée), Labex OncoImmunology (investissement d’avenir), grant IREB, Coup d’Elan de la Fondation Bettencourt-Schueller, the SIRIC CARPEM, Raymond Rosen Award from the Fondation pour le Recherche Médicale, Prix René and Andrée Duquesne—Comité de Paris Ligue Contre le Cancer and Fondation Mérieux. The work of EG was supported by the: ERC advance—GA No. 786575—RxmiRcanceR, Deutsche Forschungsgemeinschaft (DFG) SFB841 project C3, NIH CA197081-02, MOST, ISF collaboration with Canada (2473/2017), personal ISF (486/2017), ICORE–ISF (41/2011), and by DKFZ-MOST.

Author information

Authors and Affiliations

Authors

Contributions

LG and LM: main part of the experimental work and discussions; TF and EZ: data acquisition; NR: data acquisition (single-cell analysis); OP: data analysis (pathology); DO: assistance with mice and liver samples processing; KBH: help with smRNA-FISH and discussions; SC and JZ-R: human HCC data analysis and discussions; JHA: help with mice, discussions, manuscript editing; EG: study idea and discussions, manuscript editing; DSG: study design, data acquisition and analysis, manuscript writing, and discussions.

Corresponding author

Correspondence to Daniel S. Goldenberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamaev, L., Mizrahi, L., Friehmann, T. et al. The pro-oncogenic effect of the lncRNA H19 in the development of chronic inflammation-mediated hepatocellular carcinoma. Oncogene 40, 127–139 (2021). https://doi.org/10.1038/s41388-020-01513-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01513-7

This article is cited by

Search

Quick links