Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

EZH2 overexpression dampens tumor-suppressive signals via an EGR1 silencer to drive breast tumorigenesis

A Correction to this article was published on 28 November 2022

This article has been updated

Abstract

The mechanism underlying EZH2 overexpression in breast cancer and its involvement in tumorigenesis remain poorly understood. In this study, we developed an approach to systematically identify the trans-acting factors regulating the EZH2 expression, and identified more than 20 such factors. We revealed reciprocal regulation of early growth response 1 (EGR1) and EZH2: EGR1 activates the expression of EZH2, and EZH2 represses EGR1 expression. Using CRISPR-mediated genome/epigenome editing, we demonstrated that EHZ2 represses EGR1 expression through a silencer downstream of the EGR1 gene. Deletion of the EGR1 silencer resulted in reduced cell growth, invasion, tumorigenicity of breast cancer cells, and extensive changes in gene expression, such as upregulation of GADD45, DDIT3, and RND1; and downregulation of genes encoding cholesterol biosynthesis pathway enzymes. We hypothesize that EZH2/PRC2 acts as a “brake” for EGR1 expression by targeting the EGR1 silencer, and EZH2 overexpression dampens tumor-suppressive signals mediated by EGR1 to drive breast tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The approach used to identify the transcription factors (TFs)/chromatin-binding proteins that regulate the expression of EZH2.
Fig. 2: EGR1 upregulates the expression of EZH2 in breast cancer cells.
Fig. 3: EZH2 represses EGR1 expression in a PRC2-dependent manner in breast cancer cells.
Fig. 4: Identification of a distal silencer that represses the expression of EGR1.
Fig. 5: Deletion of the EGR1+26 kb silencer region represses the tumorigenic phenotype of MDA-MB-231 cells in vitro and in vivo.
Fig. 6: Extensive changes in gene expression in EGR1+26 kb silencer-knockout cells.
Fig. 7: Reciprocal regulation of EZH2 and EGR1 is implicated in breast tumorigenesis.

Similar content being viewed by others

Data availability

The RNA-seq data are deposited in the Gene Expression Omnibus (GEO) database under the accession number GSE134876.

Change history

References

  1. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441:349–53.

    Article  CAS  PubMed  Google Scholar 

  2. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 2006;20:1123–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell. 2006;125:301–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42:722–6.

    Article  CAS  PubMed  Google Scholar 

  5. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364:2496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419:624–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA. 2003;100:11606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Breuer RH, Snijders PJ, Smit EF, Sutedja TG, Sewalt RG, Otte AP, et al. Increased expression of the EZH2 polycomb group gene in BMI-1-positive neoplastic cells during bronchial carcinogenesis. Neoplasia. 2004;6:736–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sudo T, Utsunomiya T, Mimori K, Nagahara H, Ogawa K, Inoue H, et al. Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Br J Cancer. 2005;92:1754–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weikert S, Christoph F, Kollermann J, Muller M, Schrader M, Miller K, et al. Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. Int J Mol Med. 2005;16:349–53.

    CAS  PubMed  Google Scholar 

  11. Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006;24:268–73.

    Article  CAS  PubMed  Google Scholar 

  12. Wagener N, Macher-Goeppinger S, Pritsch M, Husing J, Hoppe-Seyler K, Schirmacher P, et al. Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. BMC Cancer. 2010;10:524.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Takawa M, Masuda K, Kunizaki M, Daigo Y, Takagi K, Iwai Y, et al. Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. Cancer Sci. 2011;102:1298–305.

    Article  CAS  PubMed  Google Scholar 

  14. Gnad F, Doll S, Manning G, Arnott D, Zhang Z. Bioinformatics analysis of thousands of TCGA tumors to determine the involvement of epigenetic regulators in human cancer. BMC Genom. 2015;16 Suppl 8:S5.

    Article  Google Scholar 

  15. Saramaki OR, Tammela TL, Martikainen PM, Vessella RL, Visakorpi T. The gene for polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage prostate cancer. Genes Chromosomes Cancer. 2006;45:639–45.

    Article  CAS  PubMed  Google Scholar 

  16. Koh CM, Iwata T, Zheng Q, Bethel C, Yegnasubramanian S, De Marzo AM. Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget. 2011;2:669–83.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 2003;22:5323–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oeggerli M, Tomovska S, Schraml P, Calvano-Forte D, Schafroth S, Simon R, et al. E2F3 amplification and overexpression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer. Oncogene. 2004;23:5616–23.

    Article  CAS  PubMed  Google Scholar 

  19. Lin Y-W, Ren L-L, Xiong H, Du W, Yu Y-N, Sun T-T, et al. Role of STAT3 and vitamin D receptor in EZH2 -mediated invasion of human colorectal cancer. J Pathol. 2013;230:277–90.

    Article  CAS  PubMed  Google Scholar 

  20. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322:1695–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ciarapica R, Russo G, Verginelli F, Raimondi L, Donfrancesco A, Rota R, et al. Deregulated expression of miR-26a and Ezh2 in rhabdomyosarcoma. Cell Cycle. 2009;8:172–5.

    Article  CAS  PubMed  Google Scholar 

  22. Alajez NM, Shi W, Hui AB, Bruce J, Lenarduzzi M, Ito E, et al. Enhancer of Zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101, and miR-98. Cell Death Dis. 2010;1:e85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamaguchi H, Hung M-C. Regulation and role of EZH2 in cancer. Cancer Res Treat. 2014;46:209–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang GG, Konze KD, Tao J. Polycomb genes, miRNA, and their deregulation in B-cell malignancies. Blood. 2015;125:1217–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mahara S, Lee PL, Feng M, Tergaonkar V, Chng WJ, Yu Q. HIFI-alpha activation underlies a functional switch in the paradoxical role of Ezh2/PRC2 in breast cancer. Proc Natl Acad Sci USA. 2016;113:E3735–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang C-J, Yang J-Y, Xia W, Chen C-T, Xie X, Chao C-H, et al. EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-β-catenin signaling. Cancer Cell. 2011;19:86–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujii S, Tokita K, Wada N, Ito K, Yamauchi C, Ito Y, et al. MEK-ERK pathway regulates EZH2 overexpression in association with aggressive breast cancer subtypes. Oncogene. 2011;30:4118–28.

    Article  CAS  PubMed  Google Scholar 

  28. Tiwari N, Tiwari Vijay K, Waldmeier L, Balwierz Piotr J, Arnold P, Pachkov M, et al. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell. 2013;23:768–83.

    Article  CAS  PubMed  Google Scholar 

  29. Kalashnikova EV, Revenko AS, Gemo AT, Andrews NP, Tepper CG, Zou JX, et al. ANCCA/ATAD2 overexpression identifies breast cancer patients with poor prognosis, acting to drive proliferation and survival of triple-negative cells through control of B-Myb and EZH2. Cancer Res. 2010;70:9402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCabe MT, Creasy CL. EZH2 as a potential target in cancer therapy. Epigenomics. 2014;6:341–51.

    Article  CAS  PubMed  Google Scholar 

  31. Koppens M, van Lohuizen M. Context-dependent actions of Polycomb repressors in cancer. Oncogene. 2016;35:1341–52.

    Article  CAS  PubMed  Google Scholar 

  32. Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev. 2007;21:49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008;27:7274–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Du J, Li L, Ou Z, Kong C, Zhang Y, Dong Z, et al. FOXC1, a target of polycomb, inhibits metastasis of breast cancer cells. Breast Cancer Res Treat. 2012;131:65–73.

    Article  CAS  PubMed  Google Scholar 

  35. Wassef M, Margueron R. The multiple facets of PRC2 alterations in cancers. J Mol Biol. 2017;429:1978–93.

    Article  CAS  PubMed  Google Scholar 

  36. Zeng J, Li G. TFmapper: a tool for searching putative factors regulating gene expression using ChIP-seq data. Int J Biol Sci. 2018;14:1724–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H, et al. Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 2019;47:D729–35.

    Article  CAS  PubMed  Google Scholar 

  38. Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, et al. Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 2017;45:D658–62.

    Article  CAS  PubMed  Google Scholar 

  39. Baron V, Adamson ED, Calogero A, Ragona G, Mercola D. The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGF beta 1, PTEN, p53, and fibronectin. Cancer Gene Ther. 2006;13:115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pagel J-I, Deindl E. Early growth response 1-A transcription factor in the crossfire of signal transduction cascades. Indian J Biochem Biophys. 2011;48:226–35.

    CAS  PubMed  Google Scholar 

  41. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018;46:D1284.

    Article  PubMed  Google Scholar 

  42. Liu C, Rangnekar VM, Adamson E, Mercola D. Suppression of growth and transformation and induction of apoptosis by EGR-1. Cancer Gene Ther. 1998;5:3–28.

    CAS  PubMed  Google Scholar 

  43. Silverman ES, Du J, Williams AJ, Wadgaonkar R, Drazen JM, Collins T. cAMP-response-element-binding-protein-binding protein (CBP) and p300 are transcriptional co-activators of early growth response factor-1 (Egr-1). Biochem J. 1998;336:183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21:421–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6.

    Article  CAS  PubMed  Google Scholar 

  46. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang YH, Jungreis R, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004;18:3066–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. Embo J. 2005;24:1243–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nobes CD, Lauritzen I, Mattei MG, Paris S, Hall A, Chardin P. A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol. 1998;141:187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Okada T, Sinha S, Esposito I, Schiavon G, López-Lago MA, Su W, et al. The Rho GTPase Rnd1 suppresses mammary tumorigenesis and EMT by restraining Ras-MAPK signalling. Nat Cell Biol. 2015;17:81–94.

    Article  CAS  PubMed  Google Scholar 

  50. Tanaka S, Miyagi S, Sashida G, Chiba T, Yuan J, Mochizuki-Kashio M, et al. Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood. 2012;120:1107–17.

    Article  CAS  PubMed  Google Scholar 

  51. Bahrami S, Drabløs F. Gene regulation in the immediate-early response process. Adv Biol Regul. 2016;62:37–49.

    Article  CAS  PubMed  Google Scholar 

  52. Thiel G, Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol. 2002;193:287–92.

    Article  CAS  PubMed  Google Scholar 

  53. Yu J, Baron V, Mercola D, Mustelin T, Adamson ED. A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death Differ. 2007;14:436–46.

    Article  CAS  PubMed  Google Scholar 

  54. Bhattacharyya S, Fang F, Tourtellotte W, Varga J. Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J Pathol. 2013;229:286–97.

    Article  CAS  PubMed  Google Scholar 

  55. Sukhatme VP, Cao XM, Chang LC, Tsai-Morris CH, Stamenkovich D, Ferreira PC, et al. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell. 1988;53:37–43.

    Article  CAS  PubMed  Google Scholar 

  56. Nguyen HQ, Hoffman-Liebermann B, Liebermann DA. The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell. 1993;72:197–209.

    Article  CAS  PubMed  Google Scholar 

  57. Barbieri E, Trizzino M, Welsh SA, Owens TA, Calabretta B, Carroll M, et al. Targeted enhancer activation by a subunit of the integrator complex. Mol Cell. 2018;71:103–16.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lejard V, Blais F, Guerquin MJ, Bonnet A, Bonnin MA, Havis E, et al. EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem. 2011;286:5855–67.

    Article  CAS  PubMed  Google Scholar 

  59. Spaapen F, van den Akker GG, Caron MM, Prickaerts P, Rofel C, Dahlmans VE, et al. The immediate early gene product EGR1 and polycomb group proteins interact in epigenetic programming during chondrogenesis. PLoS One. 2013;8:e58083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Worringer KA, Rand TA, Hayashi Y, Sami S, Takahashi K, Tanabe K, et al. The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell. 2014;14:40–52.

    Article  CAS  PubMed  Google Scholar 

  61. Gibbs JD, Liebermann DA, Hoffman B. Egr-1 abrogates the E2F-1 block in terminal myeloid differentiation and suppresses leukemia. Oncogene. 2008;27:98–106.

    Article  CAS  PubMed  Google Scholar 

  62. Shafarenko M, Liebermann DA, Hoffman B. Egr-1 abrogates the block imparted by c-Myc on terminal M1 myeloid differentiation. Blood. 2005;106:871–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Keilwagen J, Posch S, Grau J. Accurate prediction of cell type-specific transcription factor binding. Genome Biol. 2019;20:9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gokey NG, Lopez-Anido C, Gillian-Daniel AL, Svaren J. Early growth response 1 (Egr1) regulates cholesterol biosynthetic gene expression. J Biol Chem. 2011;286:29501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kuzu OF, Noory MA, Robertson GP. The role of cholesterol in cancer. Cancer Res. 2016;76:2063–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Silvente-Poirot S, Poirot M. Cancer. Cholesterol and cancer, in the balance. Science. 2014;343:1445–6.

    Article  PubMed  Google Scholar 

  67. Thyss R, Virolle V, Imbert V, Peyron JF, Aberdam D, Virolle T. NF-kappaB/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. EMBO J. 2005;24:128–37.

    Article  CAS  PubMed  Google Scholar 

  68. Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF. GADD45 proteins: central players in tumorigenesis. Curr Mol Med. 2012;12:634–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pietrasik S, Zajac G, Morawiec J, Soszynski M, Fila M, Blasiak J. Interplay between BRCA1 and GADD45A and its potential for nucleotide excision repair in breast cancer pathogenesis. Int J Mol Sci. 2020;21:870.1–22.

    Article  Google Scholar 

  70. Salvador JM, Brown-Clay JD, Fornace AJ Jr. Gadd45 in stress signaling, cell cycle control, and apoptosis. Adv Exp Med Biol. 2013;793:1–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Science and Technology Development Fund, Macau SAR (File no. 0107/2019/A2 and 095/2015/A3), the Science and Technology Program of Guangzhou, China (201807010101), and the Research & Development Administration Office of the University of Macau (MYRG201700099, MYRG2018-00022) awarded to GL.

Author information

Authors and Affiliations

Authors

Contributions

GL conceived and supervised the study. XG, HD, ZL, and YY carried out the experiments. XG, XZ, and GL analyzed data. ULC, YL, and JZ performed bioinformatic analysis. XW and GL drafted the paper. All authors have read and approved the paper.

Corresponding author

Correspondence to Gang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Deng, H., Choi, U.L. et al. EZH2 overexpression dampens tumor-suppressive signals via an EGR1 silencer to drive breast tumorigenesis. Oncogene 39, 7127–7141 (2020). https://doi.org/10.1038/s41388-020-01484-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01484-9

This article is cited by

Search

Quick links