Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of protein tyrosine phosphatase receptor type F suppresses Wnt signaling in colorectal cancer

This article has been updated

Abstract

Wnt signaling dysregulation promotes tumorigenesis in colorectal cancer (CRC). We investigated the role of PTPRF, a receptor-type tyrosine phosphatase, in regulating Wnt signaling in CRC. Knockdown of PTPRF decreased cell proliferation in patient-derived primary colon cancer cells and established CRC cell lines. In addition, the rate of proliferation as well as colony formation ability were significantly decreased in tumor organoids grown in 3D, whereas the number of differentiated tumor organoids were markedly increased. Consistently, knockdown of PTPRF resulted in a decrease in the expression of genes associated with cancer stem cells downstream of Wnt/β-catenin signaling. Treating PTPRF knockdown cells with GSK3 inhibitor rescued the expression of Wnt target genes suggesting that PTPRF functions upstream of the β-catenin destruction complex. PTPRF was found to interact with LRP6 and silencing PTPRF largely decreased the activation of LRP6. Interestingly, this PTPRF-mediated activation of Wnt signaling was blocked in cells treated with clathrin endocytosis inhibitor. Furthermore, knockdown of PTPRF inhibited xenograft tumor growth in vivo and decreased the expression of Wnt target genes. Taken together, our studies identify a novel role of PTPRF as an oncogenic protein phosphatase in supporting the activation of Wnt signaling in CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Knockdown of PTPRF inhibits cell proliferation in colon cancer cells.
Fig. 2: Knockdown of PTPRF decreases tumor organoid formation.
Fig. 3: The expression of PTPRF positively regulates Wnt signaling.
Fig. 4: PTPRF regulates Wnt signaling at a step upstream of the β-catenin destruction complex.
Fig. 5: PTPRF interacts with LRP6.
Fig. 6: PTPRF-mediated activation of Wnt signaling requires clathrin-dependent endocytosis.
Fig. 7: Knockdown of PTPRF inhibits xenograft tumor growth and Wnt signaling.

Similar content being viewed by others

Change history

  • 29 July 2021

    The name of B. Mark Evers was given incorrect in HTML version of the article. Correct is: Given name: B. Mark Family name: Evers

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  PubMed  Google Scholar 

  2. Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D, et al. Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin. 2018;68:297–316.

    Article  PubMed  Google Scholar 

  3. O’Connell JB, Maggard MA, Livingston EH, Yo CK. Colorectal cancer in the young. Am J Surg. 2004;187:343–8.

    Article  PubMed  Google Scholar 

  4. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.

    Article  CAS  PubMed  Google Scholar 

  5. Schatoff EM, Leach BI, Dow LE. Wnt signaling and colorectal cancer. Curr Colorectal Cancer Rep. 2017;13:101–10.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13:767–79.

    Article  CAS  PubMed  Google Scholar 

  7. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

    Article  CAS  PubMed  Google Scholar 

  8. Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    Article  CAS  PubMed  Google Scholar 

  9. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68–75.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stamos JL, Weis WI. The beta-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5:a007898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Julien SG, Dube N, Hardy S, Tremblay ML. Inside the human cancer tyrosine phosphatome. Nat Rev Cancer. 2011;11:35–49.

    Article  CAS  PubMed  Google Scholar 

  12. Virshup DM, Shenolikar S. From promiscuity to precision: protein phosphatases get a makeover. Mol Cell. 2009;33:537–45.

    Article  CAS  PubMed  Google Scholar 

  13. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117:699–711.

    Article  CAS  PubMed  Google Scholar 

  14. Johnson KG, Van, Vactor D. Receptor protein tyrosine phosphatases in nervous system development. Physiol Rev. 2003;83:1–24.

    Article  CAS  PubMed  Google Scholar 

  15. Barlan K, Cetera M, Horne-Badovinac S. Fat2 and Lar define a basally localized planar signaling system controlling collective cell migration. Dev Cell. 2017;40:467–77. e465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Du WW, Fang L, Li M, Yang X, Liang Y, Peng C, et al. MicroRNA miR-24 enhances tumor invasion and metastasis by targeting PTPN9 and PTPRF to promote EGF signaling. J Cell Sci. 2013;126:1440–53.

    Article  CAS  PubMed  Google Scholar 

  17. Nunes-Xavier CE, Martin-Perez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta. 2013;1836:211–26.

    CAS  PubMed  Google Scholar 

  18. Levea CM, McGary CT, Symons JR, Mooney RA. PTP LAR expression compared to prognostic indices in metastatic and non-metastatic breast cancer. Breast Cancer Res Treat. 2000;64:221–8.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S, et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science. 2004;304:1164–6.

    Article  CAS  PubMed  Google Scholar 

  20. Bera R, Chiou CY, Yu MC, Peng JM, He CR, Hsu CY, et al. Functional genomics identified a novel protein tyrosine phosphatase receptor type F-mediated growth inhibition in hepatocarcinogenesis. Hepatology. 2014;59:2238–50.

    Article  CAS  PubMed  Google Scholar 

  21. DaSilva JO, Amorino GP, Casarez EV, Pemberton B, Parsons SJ. Neuroendocrine-derived peptides promote prostate cancer cell survival through activation of IGF-1R signaling. Prostate. 2013;73:801–12.

    Article  CAS  PubMed  Google Scholar 

  22. Bujko M, Kober P, Mikula M, Ligaj M, Ostrowski J, Siedlecki JA. Expression changes of cell-cell adhesion-related genes in colorectal tumors. Oncol Lett. 2015;9:2463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wen YA, Xiong X, Zaytseva YY, Napier DL, Vallee E, Li AT, et al. Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer. Cell Death Dis. 2018;9:265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Streuli M, Krueger NX, Ariniello PD, Tang M, Munro JM, Blattler WA, et al. Expression of the receptor-linked protein tyrosine phosphatase LAR: proteolytic cleavage and shedding of the CAM-like extracellular region. EMBO J. 1992;11:897–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I, et al. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell. 2009;136:352–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wen YA, Xiong X, Harris JW, Zaytseva YY, Mitov MI, Napier DL, et al. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death Dis. 2017;8:e2593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T, et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med. 2014;20:29–36.

    Article  CAS  PubMed  Google Scholar 

  28. Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochemical Sci. 2010;35:161–8.

    Article  CAS  Google Scholar 

  29. Stewart K, Uetani N, Hendriks W, Tremblay ML, Bouchard M. Inactivation of LAR family phosphatase genes Ptprs and Ptprf causes craniofacial malformations resembling Pierre-Robin sequence. Development. 2013;140:3413–22.

    Article  CAS  PubMed  Google Scholar 

  30. Voloshanenko O, Erdmann G, Dubash TD, Augustin I, Metzig M, Moffa G, et al. Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nat Commun. 2013;4:2610.

    Article  PubMed  CAS  Google Scholar 

  31. Flanagan DJ, Vincan E, Phesse TJ. Wnt signaling in cancer: not a binary ON:OFF switch. Cancer Res. 2019;79:5901–6.

    Article  CAS  PubMed  Google Scholar 

  32. Flanagan DJ, Barker N, Costanzo NSD, Mason EA, Gurney A, Meniel VS, et al. Frizzled-7 is required for Wnt signaling in gastric tumors with and without Apc mutations. Cancer Res. 2019;79:970–81.

    Article  CAS  PubMed  Google Scholar 

  33. Vermeulen L, Morrissey E, van der Heijden M, Nicholson AM, Sottoriva A, Buczacki S, et al. Defining stem cell dynamics in models of intestinal tumor initiation. Science. 2013;342:995–8.

    Article  CAS  PubMed  Google Scholar 

  34. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76.

    Article  CAS  PubMed  Google Scholar 

  35. Yamamoto H, Komekado H, Kikuchi A. Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev Cell. 2006;11:213–23.

    Article  CAS  PubMed  Google Scholar 

  36. Saito-Diaz K, Benchabane H, Tiwari A, Tian A, Li B, Thompson JJ, et al. APC inhibits ligand-independent Wnt signaling by the clathrin endocytic pathway. Dev Cell. 2018;44:566–81. e568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim I, Pan W, Jones SA, Zhang Y, Zhuang X. Wu D. Clathrin and AP2 are required for PtdIns(4,5)P2-mediated formation of LRP6 signalosomes. J Cell Biol. 2013;200:419–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hagemann AI, Kurz J, Kauffeld S, Chen Q, Reeves PM, Weber S, et al. In vivo analysis of formation and endocytosis of the Wnt/beta-catenin signaling complex in zebrafish embryos. J Cell Sci. 2014;127:3970–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mana G, Clapero F, Panieri E, Panero V, Bottcher RT, Tseng HY, et al. PPFIA1 drives active alpha5beta1 integrin recycling and controls fibronectin fibrillogenesis and vascular morphogenesis. Nat Commun. 2016;7:13546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tian X, Yang C, Yang L, Sun Q, Liu N. PTPRF as a novel tumor suppressor through deactivation of ERK1/2 signaling in gastric adenocarcinoma. Onco Targets Ther. 2018;11:7795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harder KW, Saw J, Miki N, Jirik F. Coexisting amplifications of the chromosome 1p32 genes (PTPRF and MYCL1) encoding protein tyrosine phosphatase LAR and L-myc in a small cell lung cancer line. Genomics. 1995;27:552–3.

    Article  CAS  PubMed  Google Scholar 

  42. Yang T, Zhang JS, Massa SM, Han X, Longo FM. Leukocyte common antigen-related tyrosine phosphatase receptor: increased expression and neuronal-type splicing in breast cancer cells and tissue. Mol Carcinogenesis. 1999;25:139–49.

    Article  CAS  Google Scholar 

  43. Konishi N, Tsujikawa K, Yamamoto H, Ishida E, Nakamura M, Shimada K, et al. Overexpression of leucocyte common antigen (LAR) P-subunit in thyroid carcinomas. Br J Cancer. 2003;88:1223–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soulieres D, Hirsch FR, Shepherd FA, Bordogna W, Delmar P, Shames DS, et al. PTPRF expression as a potential prognostic/predictive marker for treatment with erlotinib in non-small-cell lung cancer. J Thorac Oncol. 2015;10:1364–9.

    Article  CAS  PubMed  Google Scholar 

  45. Liu J, Weiss HL, Rychahou P, Jackson LN, Evers BM, Gao T. Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene. 2009;28:994–1004.

    Article  CAS  PubMed  Google Scholar 

  46. Li X, Stevens PD, Liu J, Yang H, Wang W, Wang C et al. PHLPP is a negative regulator of RAF1, which reduces colorectal cancer cell motility and prevents tumor progression in mice. Gastroenterology. 2014;146:1301–12. e1301-1310.

  47. Stevens PD, Wen YA, Xiong X, Zaytseva YY, Li AT, Wang C, et al. Erbin suppresses KSR1-mediated RAS/RAF signaling and tumorigenesis in colorectal cancer. Cancer Res. 2018;78:4839–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, et al. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature. 2002;417:664–7.

    Article  CAS  PubMed  Google Scholar 

  49. Chen M, Wang J, Lu J, Bond MC, Ren XR, Lyerly HK, et al. The anti-helminthic niclosamide inhibits Wnt/Frizzled1 signaling. Biochemistry. 2009;48:10267–74.

    Article  CAS  PubMed  Google Scholar 

  50. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding grants R01CA133429 (TG), R01CA208343 (BME and TG), T32CA160003 (BME), and F31CA196219 (PDS). This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Award (#1839289). The studies were conducted with support provided by the Biospecimen Procurement and Translational Pathology and Biostatistics and Bioinformatics Shared Resource Facilities of the University of Kentucky Markey Cancer Center (P30CA177558) at the University of Kentucky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyan Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, T., Stevens, A.T., Xiong, X. et al. Inhibition of protein tyrosine phosphatase receptor type F suppresses Wnt signaling in colorectal cancer. Oncogene 39, 6789–6801 (2020). https://doi.org/10.1038/s41388-020-01472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01472-z

This article is cited by

Search

Quick links