Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aberrant activation of super enhancer and choline metabolism drive antiandrogen therapy resistance in prostate cancer

Abstract

Next generation antiandrogens such as enzalutamide (Enz) are effective initially for the treatment of castration-resistant prostate cancer (CRPC). However, the disease often relapses and the underlying mechanisms remain elusive. By performing H3-lysine-27 acetylation (H3K27ac) ChIP-seq in Enz-resistant CRPC cells, we identified a group of super enhancers (SEs) that are abnormally activated in Enz-resistant CRPC cells and associated with enhanced transcription of a subset of tumor promoting genes such as CHPT1, which catalyzes phosphatidylcholine (PtdCho) synthesis and regulates choline metabolism. Increased CHPT1 conferred CRPC resistance to Enz in vitro and in mice. While androgen receptor (AR) primarily binds to a putative CHPT1 enhancer and mediates androgen-dependent expression of CHPT1 gene in Enz-sensitive prostate cancer cells, AR binds to a different enhancer within the CHPT1 SE locus and facilities androgen-independent expression of CHPT1 in Enz-resistant cells. We further identified a long-non coding RNA transcribed at CHPT1 enhancer (also known as enhancer RNA) that binds to the H3K27ac reader BRD4 and participates in regulating CHPT1 SE activity and CHPT1 gene expression. Our findings demonstrate that aberrantly activated SE upregulates CHPT1 expression and confers Enz resistance in CRPC, suggesting that SE-mediated expression of downstream effectors such as CHPT1 can be viable targets to overcome Enz resistance in PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aberrant super enhancer (SE) activation in the CHPT1 gene locus in Enz-resistant PCa cells.
Fig. 2: AR positively regulates CHPT1 gene expression.
Fig. 3: CHPT1 is upregulated independent of AR signaling in Enz resistant PCa cells.
Fig. 4: CHPT1 regulates Enz resistance in PCa cells.
Fig. 5: BET and CBP/p300 bromodomain inhibitors disrupt SE and decrease CHPT1 expression.
Fig. 6: CHPT1-eRNA is overexpressed in C4-2-Enz cells and directly interacts with BRD4.
Fig. 7: CHPT1-eRNA promotes CHPT1 expression and Enz resistance via enhancing SE activity.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    Article  PubMed  Google Scholar 

  2. Niu Y, Chang TM, Yeh S, Ma WL, Wang YZ, Chang C. Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails. Oncogene. 2010;29:3593–604.

    Article  CAS  PubMed  Google Scholar 

  3. Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science. 2009;324:787–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shore ND, Chowdhury S, Villers A, Klotz L, Siemens DR, Phung D, et al. Efficacy and safety of enzalutamide versus bicalutamide for patients with metastatic prostate cancer (TERRAIN): a randomised, double-blind, phase 2 study. Lancet Oncol. 2016;17:153–63.

    Article  CAS  PubMed  Google Scholar 

  5. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367:1187–97.

    Article  CAS  PubMed  Google Scholar 

  6. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371:424–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Heidenreich A, Chowdhury S, Klotz L, Siemens DR, Villers A, Ivanescu C, et al. Impact of enzalutamide compared with bicalutamide on quality of life in men with metastatic castration-resistant prostate cancer: additional analyses from the TERRAIN randomised clinical trial. Eur Urol. 2017;71:534–42.

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Chan SC, Brand LJ, Hwang TH, Silverstein KA, Dehm SM. Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res. 2013;73:483–9.

    Article  CAS  PubMed  Google Scholar 

  9. Sharp A, Coleman I, Yuan W, Sprenger C, Dolling D, Rodrigues DN, et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J Clin Invest. 2019;129:192–208.

    Article  PubMed  Google Scholar 

  10. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371:1028–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khan A, Mathelier A, Zhang X. Super-enhancers are transcriptionally more active and cell type-specific than stretch enhancers. Epigenetics. 2018;13:910–22.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155:934–47.

    Article  CAS  PubMed  Google Scholar 

  14. Xie JJ, Jiang YY, Jiang Y, Li CQ, Lim MC, An O. et al. Super-enhancer-driven long non-coding RNA LINC01503, regulated by TP63, is over-expressed and oncogenic in squamous cell carcinoma. Gastroenterology. 2018;154:2137–51.

    Article  CAS  PubMed  Google Scholar 

  15. He Y, Long W, Liu Q. Targeting super-enhancers as a therapeutic strategy for cancer treatment. Front Pharm. 2019;10:361.

    Article  CAS  Google Scholar 

  16. Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science. 2018;361:eaar3958.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zuber V, Bettella F, Witoelar A, Consortium P, Cruk G, Consortium B, et al. Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer. BMC Genomics. 2017;18:270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Di Micco R, Fontanals-Cirera B, Low V, Ntziachristos P, Yuen SK, Lovell CD, et al. Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell Rep. 2014;9:234–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sengupta S, George RE. Super-enhancer-driven transcriptional dependencies in cancer. Trends Cancer. 2017;3:269–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, et al. Selective inhibition of BET bromodomains. Nature. 2010;468:1067–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153:320–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465:182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mousavi K, Zare H, Dell’orso S, Grontved L, Gutierrez-Cruz G, Derfoul A, et al. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell. 2013;51:606–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Katz-Brull R, Margalit R, Degani H. Differential routing of choline in implanted breast cancer and normal organs. Magn Reson Med. 2001;46:31–8.

    Article  CAS  PubMed  Google Scholar 

  26. Rohrschneider LR, Boutwell RK. The early stimulation of phospholipid metabolism by 12-0-tetradecanoyl-phorbol-13-acetate and its specificity for tumor promotion. Cancer Res. 1973;33:1945–52.

    CAS  PubMed  Google Scholar 

  27. Wertz PW, Mueller GC. Rapid stimulation of phospholipid metabolism in bovine lymphocytes by tumor-promoting phorbol esters. Cancer Res. 1978;38:2900–4.

    CAS  PubMed  Google Scholar 

  28. Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011;11:835–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ackerstaff E, Glunde K, Bhujwalla ZM. Choline phospholipid metabolism: a target in cancer cells? J Cell Biochem. 2003;90:525–33.

    Article  CAS  PubMed  Google Scholar 

  30. Glunde K, Jie C, Bhujwalla ZM. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res. 2004;64:4270–6.

    Article  CAS  PubMed  Google Scholar 

  31. Ting YL, Sherr D, Degani H. Variations in energy and phospholipid metabolism in normal and cancer human mammary epithelial cells. Anticancer Res. 1996;16:1381–8.

    CAS  PubMed  Google Scholar 

  32. Jia M, Andreassen T, Jensen L, Bathen TF, Sinha I, Gao H, et al. Estrogen receptor alpha promotes breast cancer by reprogramming choline metabolism. Cancer Res. 2016;76:5634–46.

    Article  CAS  PubMed  Google Scholar 

  33. Chatterjee D, Mukherjee S, Das SK. Regulation of cholinephosphotransferase by thyroid hormone. Biochem Biophys Res Commun. 2001;282:861–4.

    Article  CAS  PubMed  Google Scholar 

  34. Cho WK, Spille JH, Hecht M, Lee C, Li C, Grube V, et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science. 2018;361:412–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chandrashekar DS, Bashel B, SAH Balasubramanya, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stelloo S, Bergman AM, Zwart W. Androgen receptor enhancer usage and the chromatin regulatory landscape in human prostate cancers. Endocr. Relat. Cancer. 2019;26:R267–85.

    Article  CAS  PubMed  Google Scholar 

  37. Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E, Everett J, et al. Integrative clinical genomics of metastatic cancer. Nature. 2017;548:297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116:11428–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cancer Genome Atlas Research N. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–25.

    Article  CAS  Google Scholar 

  41. Kohli M, Wang L, Xie F, Sicotte H, Yin P, Dehm SM, et al. Mutational landscapes of sequential prostate metastases and matched patient derived xenografts during enzalutamide therapy. PLoS ONE. 2015;10:e0145176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lin D, Wyatt AW, Xue H, Wang Y, Dong X, Haegert A, et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 2014;74:1272–83.

    Article  CAS  PubMed  Google Scholar 

  43. Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014;510:278–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miquel K, Pradines A, Terce F, Selmi S, Favre G. Competitive inhibition of choline phosphotransferase by geranylgeraniol and farnesol inhibits phosphatidylcholine synthesis and induces apoptosis in human lung adenocarcinoma A549 cells. J Biol Chem. 1998;273:26179–86.

    Article  CAS  PubMed  Google Scholar 

  45. Anthony ML, Zhao M, Brindle KM. Inhibition of phosphatidylcholine biosynthesis following induction of apoptosis in HL-60 cells. J Biol Chem. 1999;274:19686–92.

    Article  CAS  PubMed  Google Scholar 

  46. Ramos B, El Mouedden M, Claro E, Jackowski S. Inhibition of CTP:phosphocholine cytidylyltransferase by C(2)-ceramide and its relationship to apoptosis. Mol Pharm. 2002;62:1068–75.

    Article  CAS  Google Scholar 

  47. Doroshow DB, Eder JP, LoRusso PM. BET inhibitors: a novel epigenetic approach. Ann Oncol. 2017;28:1776–87.

    Article  CAS  PubMed  Google Scholar 

  48. Chapuy B, McKeown MR, Lin CY, Monti S, Roemer MG, Qi J, et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell. 2013;24:777–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zanconato F, Battilana G, Forcato M, Filippi L, Azzolin L, Manfrin A, et al. Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nat Med. 2018;24:1599–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sen P, Lan Y, Li CY, Sidoli S, Donahue G, Dou Z. et al. Histone acetyltransferase p300 induces de novo super-enhancers to drive cellular senescence. Mol Cell. 2019;73:684–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Larue RC, Plumb MR, Crowe BL, Shkriabai N, Sharma A, DiFiore J, et al. Bimodal high-affinity association of Brd4 with murine leukemia virus integrase and mononucleosomes. Nucleic Acids Res. 2014;42:4868–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kvaratskhelia M, Sharma A, Larue RC, Serrao E, Engelman A. Molecular mechanisms of retroviral integration site selection. Nucleic Acids Res. 2014;42:10209–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hajmirza A, Emadali A, Gauthier A, Casasnovas O, Gressin R, Callanan MB BET Family Protein BRD4: An Emerging Actor in NFkappaB Signaling in Inflammation and Cancer. Biomedicines 2018;6.

  54. Donati B, Lorenzini E, Ciarrocchi A. BRD4 and cancer: going beyond transcriptional regulation. Mol Cancer. 2018;17:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152:1237–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hah N, Benner C, Chong LW, Yu RT, Downes M, Evans RM. Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs. Proc Natl Acad Sci USA. 2015;112:E297–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature. 2011;474:390–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science. 2008;322:1845–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Beagrie RA, Pombo A. Gene activation by metazoan enhancers: Diverse mechanisms stimulate distinct steps of transcription. Bioessays. 2016;38:881–93.

    Article  CAS  PubMed  Google Scholar 

  60. Ko JY, Oh S, Yoo KH. Functional enhancers as master regulators of tissue-specific gene regulation and cancer development. Mol Cells. 2017;40:169–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol. 2007;8:479–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hentze MW, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 2018;19:327–41.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao Y, Wang L, Ren S, Wang L, Blackburn PR, McNulty MS, et al. Activation of P-TEFb by androgen receptor-regulated enhancer RNAs in castration-resistant prostate cancer. Cell Rep. 2016;15:599–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Mayo Clinic Foundation (to HH) and the National Natural Science Foundation of China (81972654 to SW), Tianjin International Student Science and Technology Activities Launched Project (20160014 to SW), and Tianjin science and technology commission (18JCZDJC34800 to CQ).

Author information

Authors and Affiliations

Authors

Contributions

HH, YN, and CQ conceived the study. SW and YH generated reagents and conducted experiment design and execution, data collection and data analysis. LW and JZ acquired patient specimens and supervised IHC analysis. HH, SW, YN, and CQ wrote the manuscript.

Corresponding authors

Correspondence to Changyi Quan, Yuanjie Niu or Haojie Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics

The patient sample study was approved by the Mayo Clinic Institutional Review Board. The mouse studies were approved by the IACUC at Mayo Clinic.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, S., He, Y., Wang, L. et al. Aberrant activation of super enhancer and choline metabolism drive antiandrogen therapy resistance in prostate cancer. Oncogene 39, 6556–6571 (2020). https://doi.org/10.1038/s41388-020-01456-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01456-z

This article is cited by

Search

Quick links